期刊文献+

基于遗传算法的胸部CT图像肺组织分割 被引量:10

Segmentation of Lung Parenchyma in Chest CT Images Based on Genetic Algorithm
在线阅读 下载PDF
导出
摘要 肺组织分割是肺结节检测、肺功能定量分析、三维重建与可视化计算等胸部CT图像分析处理的基础。该文采用了一种基于遗传算法的边缘检测方法直接分割原始胸部CT图像的肺组织,利用遗传算法的全局寻优能力,以最大类间方差为适应度函数自动搜索最佳边缘检测阈值,并结合形态学处理提取肺组织边缘以实现肺组织分割。实验结果表明,该方法能简化分割处理,且分割效果较好,有不错的应用前景。  The segmentation of lung parenchyma is the foundation of chest CT image processing,such as lung nodule detection,quantitative analysis of lung function,three-dimensional reconstruction,and visualization analysis.This paper uses an edge detection method based on genetic algorithm to segment the lung parenchyma of original chest CT image.With global searching capacity and the largest variance between clusters as the fitness function,this method can search the optimal threshold of edge detection automatically,and extract the edge of lung parenchyma by combining morphologic processing to realize the segmentation of lung parenchyma.Experiment shows that the method can not only simplify the segmentation of lung parenchyma,but also achieve a good segmentation effect.It has a good foreground in application.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第19期188-189,192,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60571040) 山东省优秀中青年科学家科研奖励基金资助项目(2005BS01006)
关键词 遗传算法 边缘检测 最大类间方差 肺组织分割 genetic algorithm edge detection largest variance between clusters segmentation of lung parenchyma
  • 相关文献

参考文献13

  • 1Duryea J, Boone J. A Fully Automatic Algorithm for the Segmentation of Lung Fields in Digital Chest Radiographic Images[J]. Medical Physic, 1995, 22(2): 183-191.
  • 2Armato S, Giger M, MacMahon H. Automated Lung Segmentation in Digitized Postero-anterior Chest Radiographs[J]. Academic Radiology, 1998, 5(4): 245-255.
  • 3Hu S, Hoffman E A, Reinhardt J M. Automatic Lung Segmentation of Accurate Quantitation of Volumetric X-Ray CT Images[J]. IEEE Transactions on Medical Imaging, 2001, 20(6):490-498.
  • 4Brown M S, McNitt-Gray M F, Mankovich N J, et al. Method for Segmenting Chest CT Image Data Using an Anatomical Model: Preliminary Results[J]. IEEE Transactions on Medical Imaging, 1997,16(6):828-839.
  • 5Kemerink G J, Lamers R J S, Pellis B J, et al. On Segmentation of Lung Parenchyma in Quantitative Computed Tomography of the Lung[J]. Medical Physics, 1998, 25(12): 2432-2439.
  • 6Boscolo R, Brown M S, McNitt-Gray M F. Medical Image Segmentation with Knowledge-guided Robust Active Contours[J]. Radiographics, 2002, 22(2): 437-448.
  • 7Silva A, Silva J S, Santos B S, et al. Fast Pulmonary Contour Extraction in X-ray CT Images: A Methodology and Quality Assessment[C]//Proceedings of SPIE Medical Imaging. 2001.
  • 8Mclnerney T, Terzopolous D. Deformable Models in Medical Image Analysis: A Survey[J]. Medical Image Analysis, 1996, 1(2): 91-108.
  • 9季虎,孙即祥,邵晓芳,毛玲.图像边缘提取方法及展望[J].计算机工程与应用,2004,40(14):70-73. 被引量:85
  • 10刘其涛.经典边缘提取方法在医学图像中的应用[J].生命科学仪器,2005,3(5):29-31. 被引量:8

二级参考文献16

共引文献114

同被引文献96

引证文献10

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部