期刊文献+

广义隐向量拟变分不等式解的存在性(英文)

Existence of Solutions to Generalized Implicit Vector Quasi-Variationsl Inequalities
在线阅读 下载PDF
导出
摘要 本文研究一类广义隐式向量拟变分不等式问题,利用Fan-Kakutani不动点定理证明其解存在,推广了相关的文献中的结论. In this paper,we study a class of generalized implicit vector quasi-variational inequality problem,which contain vector implicit variational inequalities and generalized vector quasi-variational inequalities as special cases.By using the Fan-Kakutani fixed point theorem.we established existence result for generalized implicit vector quasi-variational inequality.
作者 方正
机构地区 江南大学理学院
出处 《应用数学》 CSCD 北大核心 2007年第4期752-756,共5页 Mathematica Applicata
关键词 多值映射 广义隐式向量拟变分不等式 广义C-拟凸性 Generalized implicit vector quasi-variational inequality Multi-valuedmapping Generalized C-quasi-convexity
  • 相关文献

参考文献10

  • 1Giannessi F.Theory of alternative.quadratic programs and complementarity problems in “Variational Inequalities and Complementarity Problems”(R.W.Cottle,F.Giannessi and J.L.Lions,Eds.)[A].New York:Wiley,1980,151-186.
  • 2Lee G M,Kim D S,Lee B S,Yen N D.Vector variational inequality as a tool for studying vector optimization problems[J].Nonlinear Analysis:Theory,Methods,and Applications,1998,34:745-765.
  • 3Konnov I V,Yao J C.On the generalized variational inequality problem[J].J.Math.Anal.Appl,1997,206:42-58.
  • 4Chiang Y,Chadli O,Yao J C.Existence of solutions to implicit vector variational inequalities[J].J.Optim.Theory App.,2003,116(2):251-264.
  • 5Lee G M.Kum S H.On implicit vector variational inequlities[J].J.Optim.Theory Appl,2000.104(2):409-425.
  • 6Cubiotti P,Yao J C.Necessary and sufficient conditions for the existence of implieit variational inequality[J].Applied Mathematics Letters,1997,10:83-87.
  • 7Konnov I V.Yao J C.Existence of solutions for generalized vector equilibrium problems[J].J.Math.Anal.Appl,1999,233:328-335.
  • 8Lin L J,Chen H L.The study of KKM theorems with applications to vector equilibrium problems and implicit vector variational inequalities problems[J].J.Global Optimization,2005,32:135-157.
  • 9Shioji N.A Further generalization of the Knaster-Kuratowski-Mazurkiewicz theorem[J].Proceedings of American Mathematical Society,1991,111:187-195.
  • 10Zeidler E.Nonlinear Functional Analysis and its Applications[M].Vol.IV,Springer-Verlag,1988.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部