期刊文献+

基于提升小波和分形的苹果树多源图像融合算法 被引量:13

Fusion Algorithm for Multi-sensor Images Based on Lifting Wavelet Transform and Fractal Theory
在线阅读 下载PDF
导出
摘要 针对可见光图像与近红外图像特点,提出了一种基于提升小波和分形的多源图像融合方法。首先将已配准的多源图像分别进行提升小波分解,在各层的低频部分用分形维加权平均融合,高频部分用区域交叉信息熵和能量特性融合;再通过提升小波重构得到融合图像。利用苹果树可见光图像和近红外图像进行了实验,实验结果表明,融合后的图像符合视觉特性,综合性能优于传统小波变换融合方法,有利于对图像作进一步分析、理解和识别。 The same object visual and near infrared images were fused in some agriculture pick machine vision systems. A novel fast image fusion algorithm has been proposed based on lifting wavelet transform and fractal dimension theory. Firstly, the registered original images were decomposed by using lifting wavelet transform respectively. Then, the decomposition low frequency components were combined with fractal dimension. The decomposition high frequency components were merged by region cross-entropy and energy features. Finally, the composite image was obtained by using inverse lifting wavelet transform. Experimental results demonstrated that the fusion algorithm is more effective in the fused image quality than traditional method based on wavelet transform. The fused image is suitable to human vision characteristic and is advantageous for further analyzing, understanding and recognizing.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2007年第10期91-93,121,共4页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金资助项目(项目编号:60575020) 湖北省重点学科黄石理工学院机械电子工程学科建设资助项目
关键词 农业采摘机器人 图像融合 提升小波变换 分形维 信息熵 Agriculture pick robot, Image fusion, Lifting wavelet transform, Fractal dimension, Entropy
  • 相关文献

参考文献9

  • 1Alexander T,Franken E M.Perceptual evaluation of different image fusion schemes[J].Displays,2003,24 (1):25-37.
  • 2Van Ruyven L J,Toet A,Valeton J M.Merging thermal and visual images by a contrast pyramid[J].Optical Engineering,1989,28(7):789-792.
  • 3Li H,Majunath B S,Mitra S K.Multi-sensor image fusion using the wavelet transforms[J].Graphical Models and Image Processing,1995,57(3):235-245.
  • 4Daubechies I,Sweldens W.Factoring wavelet transform into lifting steps[J].Journal of Fourier Analysis and Applications,1998,4(3):245-267.
  • 5李卫华,周军,周连文,程英蕾.一种基于提升小波分解图像融合方法[J].计算机应用,2006,26(2):403-405. 被引量:9
  • 6王海晖,彭嘉雄,吴巍.评价多传感器图像融合效果方法的比较[J].红外与激光工程,2004,33(2):189-193. 被引量:34
  • 7Swarnakar V,Acharya R S.Fractal dimension estimation using continuous alter-nating sequential filter pyramid[J].Image Processing,1995(13):652-655.
  • 8Pentland A P.Fractal based description of natural scene[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1984 (6):661-674.
  • 9胡波,毛罕平,张艳诚.基于二维直方图的杂草图像分割算法[J].农业机械学报,2007,38(4):199-202. 被引量:26

二级参考文献19

  • 1毛文华 ,王一鸣 ,张小超 ,王月青 .基于机器视觉的苗期杂草实时分割算法[J].农业机械学报,2005,36(1):83-86. 被引量:45
  • 2刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:360
  • 3Burt P J, Adelson E H. The laplacian pyramid as a compact image code[J]. IEEE Transactions on Communications, 1983, 31(4): 532-540.
  • 4Toet A. Hierarchical image fusion[J]. Machine Vision and Applications, 1990, 3(2): 1-11.
  • 5DudaRO HartPE DavidG. Stork著 李宏东 姚天翔等译.模式分类[M].北京:机械工业出版社,2003..
  • 6POHL C. Multiscnsor Image Fusion in Remote Sensing: Concepts,Methods and Applications[J]. International Journal of Remote Sensing, 1988, 9(5) :823 -854.
  • 7HALL DL, LINAS LJ J. An Introduction to Multisensor Data Fusion[J]. Proceedings of the IEEE, 1997, 85(1) :6 -23.
  • 8PAJARES G. A Wavelet-Based Image Fusion Tutorial[J]. Pattern Recognition, 2004, 37:1855 - 1872.
  • 9HUANG W-T, BI D-Y, MAO B-X. A novel adaptive wavelet via lifting scheme[A]. Proceedings of the third international conference on wavelet analysis and its applications[C]. Chongqing, 2003.29 -31.
  • 10RAMESH C, RANJITH T. Fusion Performance Measures and a Lifting Wavelet Transform Based Algorithm for Image Fusion[R]. ISIF,2002, 317-320.

共引文献66

同被引文献155

引证文献13

二级引证文献266

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部