期刊文献+

基于信息融合技术的大型水轮发电机故障诊断 被引量:24

Hydroelectric generating sets fault diagnosis based on information fusion technology
在线阅读 下载PDF
导出
摘要 为了能够从多方面反映水轮发电机组系统状态,实现对水轮发电机组故障模式的自动识别与准确诊断,将信息融合技术应用于水轮发电机组故障诊断系统。根据故障特征量将故障进行分类处理,采用多个并联的BP子神经网络进行水轮发电机组故障的局部诊断,获得彼此独立的证据,再运用D-S证据理论融合算法对各证据进行融合,最终实现对水轮发电机组故障的准确诊断。诊断测试实验证明:采用该诊断系统可有效地提高诊断可信度,减少诊断的不确定性。 Hydroelectric generating sets(HGS) information fusion diagnosis system was built for reflecting the HGS system state in multi-aspects, realizing automatical identification of HGS fault patterns and accurately diagnosing the faults. Aider fault feaaLre data were classified and processed, several shunt-wound BP networks were used to carry on local HGS fault diagnosis and acquire independent evidences each other. Then D-S evidence theory fusion algorithms were used to fuse evidences. Accurate HGS fault diagnosis was fulfilled finally. The diagnostic tests prove that the system is good to improve the reliability of the diagnosis and decrease the uncertainty markedly.
作者 贺建军 赵蕊
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第2期333-338,共6页 Journal of Central South University:Science and Technology
关键词 水轮发电机 故障诊断 信息融合 证据理论 神经网络 hydroelectric generating sets fault diagnosis information fusion evidence theory neural network
  • 相关文献

参考文献13

二级参考文献97

共引文献348

同被引文献191

引证文献24

二级引证文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部