摘要
对二阶线性微分方程f″+A_1(z)f′+A_0(z)f=F(z)的复振荡进行了研究,其中系数A_i(z)(i=0,1)和F(z)是单位圆△={z:|z|<1}内的解析函数,获得解的超级和超零点收敛指数的估计,也得到了一些关于解的不动点的结果.
This paper investigates deeply the complex oscillation of second order linear differential equations of the form f″+A1(z)f′+A0(z)f=F(z),where the coefficients Ai(z) (i = 0, 1) and F(z) are analytic functions in the unit disc △={z:|z|〈1}, The estimations of hyper order and hyper convergence exponent of zeros of solutions are obtained. Some results of fixed points of solutions is obtained.
出处
《数学年刊(A辑)》
CSCD
北大核心
2007年第5期719-732,共14页
Chinese Annals of Mathematics
基金
高校博士点专项科研基金(No.20060422049)资助的项目
关键词
线性微分方程
解析函数
增长级
零点收敛指数
单位圆
Linear differential equation, Analytic function, Order of thegrowth, Convergence exponent of zero points, Unit disc