期刊文献+

关于单位圆内解析系数的二阶线性微分方程的复振荡 被引量:13

On the Complex Oscillation of Second Order Linear Differential Equations with Analytic Coefficients in the Unit Disc
在线阅读 下载PDF
导出
摘要 对二阶线性微分方程f″+A_1(z)f′+A_0(z)f=F(z)的复振荡进行了研究,其中系数A_i(z)(i=0,1)和F(z)是单位圆△={z:|z|<1}内的解析函数,获得解的超级和超零点收敛指数的估计,也得到了一些关于解的不动点的结果. This paper investigates deeply the complex oscillation of second order linear differential equations of the form f″+A1(z)f′+A0(z)f=F(z),where the coefficients Ai(z) (i = 0, 1) and F(z) are analytic functions in the unit disc △={z:|z|〈1}, The estimations of hyper order and hyper convergence exponent of zeros of solutions are obtained. Some results of fixed points of solutions is obtained.
出处 《数学年刊(A辑)》 CSCD 北大核心 2007年第5期719-732,共14页 Chinese Annals of Mathematics
基金 高校博士点专项科研基金(No.20060422049)资助的项目
关键词 线性微分方程 解析函数 增长级 零点收敛指数 单位圆 Linear differential equation, Analytic function, Order of thegrowth, Convergence exponent of zero points, Unit disc
  • 相关文献

参考文献14

  • 1Heittokangas J.,Korhonen R.and Rattya J.,Growth estimates for solutions of linear complex differential equations[J],Ann.Acad.Sci.Femm.Math.,2004,29:233-246.
  • 2Chyzhykov I.,Gundersen G.and Heittokangas J.,Linear differential equations and logrithmic derivative estimates[J],Proc.London Math.Soc.,2003,86:735-754.
  • 3Hayman W.,Meromorphic Functions[M],Oxford:Clarendon Press,1964.
  • 4Heittokangas J.,On complex differential equations in the unit disc[J],Ann.Acad.Sci.Fenn.Math.Diss.,2000,122:1-54.
  • 5Tsuji M.,Potential Theory in Modern Function Theory[M],New York:Chelsea,1975,reprint of the 1959 edition.
  • 6Yang Lo,Value Distribution Theory[M],Berlin:Springer-Verlag,and Beijing:Science Press,1993.
  • 7Chen Zongxuan and Shon Kwang-ho,The growth of solutions of differential equations with coefficients of small growth in the disc[J],J.Math.Anal.Appl.,2004,297:285-304.
  • 8李叶舟.单位圆盘上二阶微分方程解的增长性[J].纯粹数学与应用数学,2002,18(4):295-300. 被引量:24
  • 9陈宗煊.一类单位圆内微分方程解的性质[J].江西师范大学学报(自然科学版),2002,26(3):189-190. 被引量:20
  • 10Gundersen G.G.,Finite order solutions of second order linear differential equations[J],Trans.Amer.Math.Soc.,1988,305:415-429.

二级参考文献10

  • 1何育赞 肖治经.单位圆微分方程f′^2=a0(z)(f-a1(z))^2f的解[J].中国学术期刊文摘(科技快报),1999,5:164-166.
  • 2Wittich H. Neuer Untesuchungen uber eindeutige analytische Funktionen[M]. Springer-Verlag Berlin:2nd ed, 1968.
  • 3Pommerenke CH. On the mean growth of the solution of complex linear differential equations in the u-nit disk[J]. Complex Variables, 1982,1: 23~ 28.
  • 4何育赞 肖治经.单位圆内微分方程(f'')2=a0(z)(f—a1(z))f的解[J].中国学术期刊文摘(科技快报),1999,5:164-166.
  • 5Laine I. Nevanlinna theory and complex differential equations [M]. Berlin New York: Walter de Gruyter, 1993.
  • 6Tsuji M. Potential Theory in Modern Function Theory[M]. Maruzen Co, Ltd Tokyo, 1959,221~236.
  • 7Heittokanges J. On complex differential equations in the unit disc[J]. Ann. Acad. Sci. Fennica Math.Dissertations, 2000, 1~54.
  • 8Peter L.Duren.Hp空间理论[M].(苏兆龙,邢富冲等译.)南京:南京工学院出版社,1987.
  • 9Saks S, Zygmund A. Analytic Functions[M]. Warsaw, 1952.
  • 10S. Yamashita,Schlicht holomorphic functions and the Riccati differential equation[J]. Math. Z. 1977,157:19~22.

共引文献29

同被引文献75

引证文献13

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部