摘要
Nanosized TiO2 particles were prepared by solvothermal method using tetrabutyl titanate as precursor,ethanol and water as solvents,and a facile immobilization method of nanosized TiO2 particles on woven glass fabric was developed. The samples obtained under various preparation conditions were charac-terized by means of thermo gravimetric analysis(TG) and differential scanning calorimetry(DSC) ,X-ray diffraction(XRD) ,transmission electron microscopy(TEM) ,high resolution-transmission electron mi-croscopy(HR-TEM) ,and Brunauer-Emmett-Teller(BET) . The results show that the cube-shape of TiO2 prepared by solvothermal method has good crystallinity of(101) surface,higher thermal stability and large specific surface area. Scanning electron microscopy(SEM) images confirmed that the immobi-lized TiO2 film was uniformly distributed and clung to the substrate firmly. The photocatalytic activity of the catalysts was tested using photocatalytic oxidation of gaseous benzene. The results show that the TiO2 calcined after solvothermal treatment suffers from lower specific surface area,and hence de-creases its photocatalytic activity. The photocatalytic activities of the TiO2 by solvothermal treatment with or without calcination in degradation 400 mg/m3 benzene are 3.7 and 4.1 times as high as catalyst without solvothermal treatment,respectively.
Nanosized TiO2 particles were prepared by solvothermal method using tetrabutyl titanate as precursor, ethanol and water as solvents, and a facile immobilization method of nanosized TiO2 particles on woven glass fabric was developed. The samples obtained under various preparation conditions were characterized by means of thermo gravimetric analysis (TG) and differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution-transmission electron microscopy (HR-TEM), and Brunauer-Emmett-Teller (BET). The results show that the cube-shape of TiO2 prepared by solvothermal method has good crystallinity of (101) surface, higher thermal stability and large specific surface area. Scanning electron microscopy (SEM) images confirmed that the immobilized TiO2 film was uniformly distributed and clung to the substrate firmly. The photocatalytic activity of the catalysts was tested using photocatalytic oxidation of gaseous benzene. The results show that the TiO2 calcined after solvothermal treatment suffers from lower specific surface area, and hence decreases its photocatalytic activity. The photocatalytic activities of the TiO2 by solvothermal treatment with or without calcination in degradation 400 mg/m^3 benzene are 3.7 and 4.1 times as high as catalyst without solvothermal treatment, respectively.
基金
Supported by the National Key Technology R&D Program of China (Grant No. 2006BAJ02A08)
the Natural Science Foundation of Zhejiang Province (Grant No. Y50596)
the Hangzhou Science & Technology Development Program (Grant No.20061133B27)
关键词
光催化剂
气体
苯
二氧化钛
检验方法
solvothermal method
photocatalysis
titania
gaseous benzene