期刊文献+

异步多传感器的MAP航迹融合

The MAP Track Fusion Algorithm of Asynchronous Multi-sensor
在线阅读 下载PDF
导出
摘要 异步航迹融合是多传感器跟踪系统的一个重要问题。针对实际应用中多传感器采样速率的不同步性,提出了多传感器系统存在反馈情况下异步多传感器的极大验后(MAP)航迹融合估计算法,分析表明,同步多传感器MAP航迹融合算法是该算法的一个特例;仿真计算也表明,该融合算法具有良好的估计精度。 In the multi-sensor track systems, communication delays usually exist between sensor platform and track fusion center due to the different sampling rates. So the local estimation of every sensor doesn't arrive at the fusion center at the same time. The fusion center should fuse those asynchronous correlated tracks in order to improve track performance, So the MAP fusion algorithm of asynchronous multi-sensor systems with feedback is presented based on the asynchronous multi-sensor. As an example, It is shown that the MAP fusion of synchronous multi-sensor is a special case of this new algorithm. The simulation results show that the algorithm is effective.
出处 《青岛大学学报(工程技术版)》 CAS 2007年第3期54-59,共6页 Journal of Qingdao University(Engineering & Technology Edition)
关键词 融合估计 异步多传感器 极大验后(MAP) track fusion asynchronous multi-sensor maximum posterior estimation(MAP)
  • 相关文献

参考文献7

  • 1Chang K C, Tian Z. Performance Evaluation of Track Fusion with Information Matrix Filter [J]. IEEE Trans on Aerospace and Electronic Systems, 2002, 38(2): 455-465.
  • 2Shozo M, Wiliam H Barker. Track Association and Track Fusion with Nondeterministic Target Dynamics [J]. IEEE Trans on Aerospace and Electronic Systems, 2002, 38(2): 659-667.
  • 3Chang K C, Zhi Tian, Shozo Mori. Performance evaluation for MAP State Estimate Fusion [J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(2) : 706-714.
  • 4Alouani A T, Rice T R. On Asynchronous Data Fusion [C]. Proc of the Annual Southeastern Symposium on Systen Theory. New York: IEEE Press, 1994:143-146.
  • 5程琤,刘兆瑜,李辉.多传感器异步航迹融合算法与仿真[J].微计算机信息,2007,23(03S):278-279. 被引量:4
  • 6杨向广,周永丰,黄登斌,吴汉宝.异步多传感器数据融合[J].舰船电子工程,2006,26(1):50-53. 被引量:2
  • 7Alouani A T, John E. Theory of Distributed Estimation Using Multiple Asynchronous Sensors [J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(2) : 717-722.

二级参考文献13

  • 1王兰云,赵拥军.多目标跟踪数据关联及其改进算法[J].微计算机信息,2005,21(12S):190-191. 被引量:10
  • 2何友,彭应宁,陆大.多传感器数据融合模型综述[J].清华大学学报(自然科学版),1996,36(9):14-20. 被引量:87
  • 3[4]X R LI.Comparison of two measurement fusion methods for Kalman filter based multisensor data fusion[J].IEEE Transactions on Aerospace and Electronic Systems,2001,37(1):273~280
  • 4[6]Alouani A T,Rice T R.On asynchronous data fusion[C].Proc.of the Annual Southeastern Symposium on System Theory.1994:143~146
  • 5[7]Alouani A T,Rice T R.On optimal asynchronous track fusion[C].Proc.of the Australian Data Fusion Symposium.1996:147~152
  • 6Bar-Shalom Y and Li X R,Estimation and tracking:Principles,techniques and software[M].Dedham,MA,Artech House,1993.
  • 7Roecker J A and McGillem C D.Comparison of two-sensor backing methods based on state vector fusion and measurement fusion[J].IEEE Transactions on Aerospace and Electronic Systems,1988,24(4):447-449.
  • 8Singer R A.Estimating optimal tracking filter performance for manned maneuvering targets.IEEE Transactions on Aerospace and Electronic Systems,1970,6(4):473-483.
  • 9Beugnon C,Singh T and Linas J,et al.Adaptive track fusion in a multisensor environment[C].Paris:ISIF Conference,2000.
  • 10何友,彭应宁.多级式多传感器信息融合中的状态估计[J].电子学报,1999,27(8):60-63. 被引量:26

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部