期刊文献+

一氧化氮和外源乙烯处理对肥城桃果实乙烯生物合成的影响 被引量:16

Effects of Nitric Oxide and Exogenous Ethylene Treatments on Ethylene Biosynthesis in Feicheng Peach
在线阅读 下载PDF
导出
摘要 【目的】研究一氧化氮(NO)和乙烯处理对肥城桃内源乙烯生物合成的影响,并探讨NO与乙烯的拮抗作用。【方法】分别用10μl·L-1NO和1000μl·L-1外源乙烯、10μl·L-1NO和1000μl·L-1外源乙烯共同处理3种方式处理肥城桃果实,研究果实内源乙烯生物合成的变化。【结果】外源乙烯促进了肥城桃果实的内源乙烯生物合成;而NO通过显著降低果实中ACS和ACO的活性,明显抑制了肥城桃果实内源乙烯的生物合成。NO和外源乙烯共同处理的肥城桃果实内源乙烯生物合成低于外源乙烯单独处理而高于NO单独处理,表明NO对外源乙烯具有拮抗作用。【结论】NO抑制了果实内源乙烯的生物合成,且抑制了外源乙烯对果实乙烯生物合成的催化作用。 [Objective] The effects of nitric oxide (NO) and exogenous ethylene on ethylene biosynthesis in harvested ‘Feicheng' peaches were studied. The antagonistic actions between NO and exogenous ethylene was also explored. [Method] ‘Feicheng' peaches were fumigated with 10 μl.L^-1 NO, 1 000 μl.L^-1 ethylene, or 10 μl.L^-1 NO plus 1 000 μl.L^-1 ethylene for 3 h. [Result] Application of exogenous ethylene promoted the biosynthesis of endogenous ethylene in peach fruit. The treatment with NO inhibited remarkably the biosynthesis of ethylene by significantly reducing the activities of ACC synthase (ACS) and ACC oxidase (ACO). Ethylene biosynthesis in the fruits treated with both NO and exogenous ethylene was lower than those with exogenous ethylene, but it was higher than those with NO, suggesting that there were antagonistic actions between NO and exogenous ethylene. [Conclusion] NO could inhibit the biosynthesis of ethylene and the catalysis of exogenous ethylene on the ethylene biosynthesis in peach fruits.
出处 《中国农业科学》 CAS CSCD 北大核心 2007年第11期2582-2586,共5页 Scientia Agricultura Sinica
基金 山东省中青年奖励基金项目资助(02BS019)
关键词 生物合成 桃(Prunus persica) 乙烯 一氧化氮 Biosynthesis Peach (Prunus persica) Ethylene Nitric oxide
  • 相关文献

参考文献19

  • 1Leshem Y Y, Pinchasov Y. Non-invasion photoacustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichiometry during the ripening of strawberries Fragaria anannasa (Duch) and avocados Persea americana (Mill.). Journal of Experimental Botany, 2000, 51(349): 1471-1473.
  • 2Zhu S H, Liu M C, Zhou J. Inhibition by nitric oxide of ethylene biosynthesis and lipoxygenase activity in peach fruit during storage. Postharvest Biology and Technology, 2006, 42(1 ): 41-48.
  • 3魏绍冲,陈昆松,罗云波.乙烯受体与果实成熟调控[J].园艺学报,2004,31(4):543-548. 被引量:18
  • 4郭维明,曾武清,陈发棣.乙烯对切花菊衰老的调节[J].南京农业大学学报,1997,20(4):24-29. 被引量:22
  • 5翟进升,刘艳红,郑泉.环丙烯类乙烯作用抑制剂在园艺产品采后保鲜上的应用[J].上海水产大学学报,2004,13(4):353-358. 被引量:6
  • 6Dong L, Lurie S, Zhou H W. Effect of l-methylcyclopropene on ripening of 'Canino' apricots and 'Royal Zee' plums. Postharvest Biology and Technology, 2002, 24: 135-145.
  • 7Liguori G, Weksler A, Zutahi Y, Lurie S, Kosto I. Effect of 1-methylcyclopropene on ripening of melting flesh peaches and nectarines. Postharvest Biology and Technology, 2004, 31: 263-268.
  • 8Leshem Y Y, Haramaty E. The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn. foliage. Journal of Plant Physiology, 1996, 148: 258-263.
  • 9Wills R B H, Ku V V V, Leshem Y Y. Fumigation with nitric oxide to extend the postharvest life of strawberries. Postharvest Biology and Technology, 2000, 18:75-79.
  • 10Kato M, Hayakawa Y, Hyodo H, Ikoma Y, Yano M. Wound-induced ethylene synthesis and expression and formation of l-aminocyclopropane-l-carboxylate (ACC) synthase, ACC oxidase, phenylalaninne ammonia lyase and peroxidase in wounded mesocarp tissue of Cucurbita maxima. Plant Cell Physiology, 2000, 41(4): 440-447.

二级参考文献132

  • 1[1]ABELES F B,MORGAN P W,SALTVEIT M E.Ethylene in plant biology[M].2nd ed San Diego,CA,Cademic Press,1992.
  • 2[2]ALONSO J M,HIRAYAMA T,ROMAN G,et al.EIN2,a bifunctional transducer of ethylene and stress responses in Arabidopsis[J].Science,1999,284:2 148-2 152.
  • 3[3]BURG S D,BURG E A.Molecular requirements for the biological activity of ethylene[J].Plant Physiol.,1967,42:144-152.
  • 4[4]CHANG C,KWOK S F,BLEECKER A,et al.Arabidopsis ethylene-response gene ETR1:similarity of product to t wo-component regulators[J].Science,1993,262:539-544.
  • 5[5]CHAO Q,ROTHENBERG M,SOLANO R,et al.Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins[J].Cell,1997,89:1 133-1 144.
  • 6[6]ECKER J R.The ethylene signal transduction passway in plants[J].Science,1995,268(5):667-675.
  • 7[7]EIDE D J.The molecular biology of metal ion transport in Saccriaromyces cerevisiae[J].Annu.Rev.Nutr.,1998,18(2):441-469.
  • 8[8]FU D,BEELER T J,DUNN T M.Sequence,mapping and disruption of CCC2,a gene that cross-complements the Ca2+-sensitive phenotype of csg1 mutants and encodes a P-type ATPase belonging to the Cu2-ATPase subfamily[J].Yeast,1995,11:283-292.
  • 9[9]HACKETT R M,HO C W,LIN Z,et al.Antisense inhibition of the Nr gene restores normal ripening to the tomato Never-ripe mutant,consistent with the ethylene receptor inhibition model[J].Plant Physiol.,2000,124:1 079-1 085.
  • 10[10]HAMZA I,SCHAEFER M,KLOMP L W J,et al.Interaction of the copper chaperone HAH1 with the wilson disease protein is essential for copper homeostasis[J].Proc.Natl.Acad.Sci.USA,1999,96:1 333-1 336.

共引文献44

同被引文献313

引证文献16

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部