摘要
仿真研究了大扰动参数稳定域ΩLDSR和小扰动参数稳定域ΩSSSR的关系,提出了几个合理的假设,据此假设提出了通过收缩相应故障后小扰动参数稳定域ΩSSSR来近似等效大扰动参数稳定域ΩLDSR的方法。结合上述收缩ΩSSSR的方法,提出了基于最优分岔控制策略的电力系统大扰动稳定控制方案。对WSCC 3机9节点系统采用最优Hopf分岔控制策略,通过3个控制步实现了对发电机励磁增益的优化控制,保证了系统大扰动稳定性;对New England 39节点系统采用最优鞍结分岔控制策略,以发电机励磁参考电压为优化变量进行大扰动稳定控制,结果表明,该控制策略可以有效解决此问题。
The relationship between large- disturbance stability region ΩLDSR and small- signal stability region ΩLDSR is studied and it is suggested based on several rational assumes to approximately identify ΩLDSR by shrinking the corresponding post- contingency ΩLDSR,which is applied in large -disturbance stability control based on optimal bifurcation control. The optimal Hopf bifurcation control is used in WSCC 9- bus test system to improve the large- disturbance stability by the optimal control of AVR gains through three steps. The optimal saddle-node bifurcation control is used in New England 39- bus test system to improve the large- disturbance stability with the AVR reference voltages as optimization parameters. Simulation results show the effectiveness of proposed large -disturbance stability control strategy.
出处
《电力自动化设备》
EI
CSCD
北大核心
2007年第11期12-17,共6页
Electric Power Automation Equipment
关键词
最优分岔控制
小扰动参数稳定域
单调失稳
振荡失稳
optimal bifurcation control
small - signal stability region
aperiodic instability
oscillatory instability