期刊文献+

异质性地表的叶面积指数反演的不确定性分析 被引量:9

LAI Inversion Uncertainties in Heterogeneous Surface
在线阅读 下载PDF
导出
摘要 叶面积指数(Leaf Area Index)可用来反映作物的生长状况,常作为主要指标应用于农作物估产。本文研究遥感中常见的混合像元问题对LAI反演所带来的不确定性问题。研究的混合像元由两种情况构成,一种是由不同长势的作物所构成的混合像元,另一种情况是由不同端元形成的混合像元。结果表明,不同长势形成的混合像元对LAI的准确反演影响不大;不同组分形成的混合像元对LAI反演影响很大。从验证的角度讲,地面实测点的LAI数据不能代表一定分辨率区域的LAI的值,对于像元LAI的验证要注意正确获得像元的LAI。 Leaf area index (LAI) is the fundamental index to indicate vegetation growth and it can be effectively used in agricultural yield estimation. In this paper, we investigate the LAI inversion uncertainty from mixed pixels. There are two situations for the mixed pixels: one is the pixel mixed with crop of different growth stages; the other is the pixel mixed with different components. The result shows that the accuracy of LAI inversion is almost not affected by different corn growth condition. On the other hand, the impact of mixed pixel on the LAI validation is clear. Field LAI measurements of some points don' t stand for the pixel LAI when the pixel consists of crops of different growth. In this situation, we should be cautious for validation of inverted LAI.
出处 《遥感学报》 EI CSCD 北大核心 2007年第6期763-770,共8页 NATIONAL REMOTE SENSING BULLETIN
基金 中国科学院知识创新工程重要方向项目(编号:KZCX3-SW-338) 国家自然科学基金(编号:NSFC40371087NSFC40401042)
关键词 混合像元 叶面积指数 反演 不确定性分析 mixed pixel leaf area index(LAI) inversion uncertainty analysis
  • 相关文献

参考文献22

  • 1Rasmussen M S. Operational Yield Forecast Using AVHRR NDVI Data: Reduction of Environmental and Inter-annual Variability [ J ]. International Journal of Remote Sensing, 1997, 18(5) : 1059--1077.
  • 2Benedetti Roberto, Paolo Rossini. On the Use of NDVI Profiles as a Tool for Agriculture Statistic : The Case Study of Wheat Yield Estimate and Forecast in Emilia Romagna[ J ]. Remote Sensing of Environment, 1993, 45: 311--326.
  • 3Chen J M, Black T A. Defining Leaf Area Index for Non-flat Leaves[ J]. Plant cell Environment, 1992, 15: 421--429.
  • 4Tian Y H, Curtis E Woodcock, Wang Y J, et al. Muhiscale Analysis and Validation of the MODIS LAI Product I. Uncertainty Assessment [ J ]. Remote Sensing Environment, 2002, 83 : 414-- 430.
  • 5Verhoef W. Light Scattering by Leaf Layers with Application to Canopy Reflectance Modeling: the SAIL Model [ J ]. Remote Sensing of Environment, 1984, 16 : 125--141.
  • 6Narendra S Goel, Richard L Thompson. Inversion of Vegetation Canopy Reflectance Models for Estimating Agronomic Variables. IV. Total Inversion of the SAIL Model [ J ]. Remote Sensing of Environment, 1984, 15: 237--253.
  • 7Fang H L, Liang S L, Andres Kuusk. Retrieving Leaf Area Index Using a Genetic Algorithm with a Canopy Radiative Transfer Model[ J]. Remote Sensing of Environment, 2003, SS : 257 --270.
  • 8Kussk A. Monitoring of Vegetation Parameters on Large Areas by the Inversion of a Canopy Reflectance Model [ J ]. International Journal of Remote Sensing, 1998, 19 (15) : 2893--2905.
  • 9Xavier A C, Vettorazzi C A. Mapping Leaf Area Index Through Spectral Vegetation Indices in a Suhtropieal Watershed [ J ]. International Journal of Remote Sensing, 2004, 2S (9) : 1661-- 1672.
  • 10Franklin S E, Lavigne M B, Deuling M J, et al. Estimation of Forest Leaf Area Index Using Remote Sensing and GIS Data for Modeling Net Primary Production [ J ]. International Journal of Remote Sensing, 1997, 18: 3459--3471.

二级参考文献5

共引文献20

同被引文献203

引证文献9

二级引证文献133

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部