期刊文献+

保等价关系变换半群T_E(X)的秩

The rank of equivalence-preserving transformation semigroup T_E(X)
在线阅读 下载PDF
导出
摘要 设TX为集合X上的全变换半群,E为X上一个非平凡的等价关系.令TE(X)={f∈TX∶(a,b)∈E■(af,bf)∈E}则它在映射的合成运算下做成TX的一个子半群.称TE(X)为保等价关系变换半群.现讨论对于一个特殊情况,即X是有限的且E只有两个等价类,分别含有r,l(l>r>1)个元.我先讨论同胚群G的秩,然后考虑的TE(X)秩.结果发现,这时TE(X)有一组生成元,含有Crl+7个元素,从而确定了TE(X)的秩不超过Crl+7. Let TX be the full transformation semigroup on the set X, for a nontrivial equivalence E on X, let TE(X)={f∈TX∶arbitary (a,b)∈E→(af,bf)∈E} is a subsemigroup of TX, it is called equivalence - preserving transformation semigroup. In this paper, we consider the rank of TE (X) for a special case that the set X is finite and the equivalence E has two classes ,each of them has r, l( l 〉 r 〉 1 ) points. We first discuss the rank of the homemomorhism group G, then consider the rank of TE(X). It is found that TE(X) has a generating set containing Cl^r+7 elements, then we determine the rank of TE(X) is no more than Cl^r+7.
出处 《贵州师范大学学报(自然科学版)》 CAS 2007年第4期73-75,共3页 Journal of Guizhou Normal University:Natural Sciences
基金 贵州省科技基金资助项目[(2007)2008号] 贵州师范大学学生科研研究基金资助
关键词 变换半群 等价关系 映射 transformation semigroup equivalence rank mapping
  • 相关文献

参考文献6

  • 1J. M. Howie. Fundamentals of Semigroup Theory [ M ]. Oxford University Press, 1995.
  • 2Pei Huisheng. On the rank of the semigroup [ J ]. Semigroup Forum ,2005,70 : 107-117.
  • 3裴惠生.一类变换半群的秩[J].信阳师范学院学报(自然科学版),2004,17(1):1-3. 被引量:3
  • 4Gomes, G. M. S. and J. M. Howie. On the rank of certain finite semigroups of transformations [ J ]. Math. Proc. Camb. Phil. Soc., 1987,101 :395-403.
  • 5Pei Huisheng, Equivalence, α Semigroup and α congruences[J]. Semigroup Froum, 1994,49( 1 ) :49-58.
  • 6Pei Huisheng, A regular α-semigroup inducing a certain lattice [ J ]. Semigroup Froum, 1996,53:98-113.

二级参考文献10

  • 1HOWIE J M. Fundamentals of semigroup theory[M]. Oxford University Press,1995.
  • 2HOWIE J M. The subsemigroup generated by the idempotents of a full transformation semigroup[J]. J London Math Soc, 1966,41 : 707-716.
  • 3HOWIE J M. Idempotent generators in finite full transformation semigroups[M]. Proc Royal Soc Edinburgh, 1978,A81:317-323.
  • 4GOMES G M S,HOWIE J M. On the ranks of certain finite semigroup of transfornations[J]. Math Proc Camb Phil Soc, 1987,101 : 395-403.
  • 5VOROB'EV N N. On symmetric associative systems[J].Leningrad Gos Ped Inst Uch Zap,1953,89:161-166.
  • 6MAGILL K D,Jr. Semigroups of functions generate by idempotents[J]. J LondonMath Soc, 1969,44: 236-242.
  • 7PEI Huisheng. Equivalences, a-semigroups and a-congruences[J]. Semigroup Forum, 1994,49 : 49-58.
  • 8PEI Huisheng,GUO Yufang.Some congruences on S(X)[J]. Southeast Asian Bull Math,2000,24:73-83.
  • 9PEI Huisheng. A unique atom in [C(w) ,Ca(ω)][J]. East-west J of Math, 1999, (2):197-205.
  • 10PEI Huisheng. A regular-semigroup inducing a certain lattice[J]. Semigroup Forum,1996,53:98-113.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部