摘要
构造了非线性守恒型浅水方程的伴随方程,并给出无结构三角网格的开边界校正表达式,利用Godunov格式和Riemann间断解Roe通量格式的设计思想,建立了无结构三角网格有限体积法的伴随开边界反演模型。进行了概化涌潮河口和钱塘江涌潮河口M2分潮开边界反演的数值实验,经过同化得到开边界上振幅的平均误差分别为0.000 6 m和0.053 3 m,证实了本文构造有限体积伴随模型的可行性,也表明本模型能够适应间断解问题。
The adjoint equations of the nonlinear shallow water conservative equations are set up, and the formulas for adjusting the open boundary conditions of unstructured triangular meshes are presented, based on the idea of the Godunov scheme and the Roe's scheme. The adjoint model used to invert the open boundary is founded based on the unstructured triangular meshes and finite volume method. The adjoint model is used to inverse the open boundary conditions of the generalized tidal bore estuary and the Qiantangjiang tidal bore estuary through some iterations. The average errors of amplitude along the open boundary are 0.000 6 m and 0.053 3 m respectively. The results indicate that the adjoint model is viable and adaptable to the discontinuous solutions.
出处
《水科学进展》
EI
CAS
CSCD
北大核心
2007年第6期829-833,共5页
Advances in Water Science
基金
水文水资源与水利工程科学国家重点实验室开放研究基金(2005407411)
教育部科学技术研究重点项目(104104)
江苏省普通高等学校高新技术产业发展项目(JH03-010)
关键词
开边界
伴随数据同化
涌潮河口
有限体积法
无结构网格
open boundary
adjoint data assimilation
tidal bore
finite volume method
unstructured triangular meshes