期刊文献+

风电场出力短期预报研究综述 被引量:72

Review on Short-term Wind Power Prediction
在线阅读 下载PDF
导出
摘要 风力发电是可再生能源发电技术中发展最快的一种,是一种理想的、无污染的洁净能源。但是风力发电具有波动性、间歇性和随机性的特点,大容量的风力发电接入电网,势必会对电力系统的安全、稳定运行带来严峻挑战。对风电场的出力进行短期预报,是解决这一问题的有效途径。在参考阅读大量国内外文献以及作者工作的基础上,首先对风电场出力预报的划分方法进行了探讨;结合我国风力发电发展的实际情况,分析了进行风电场出力短期预报的意义和必要性;然后对风电场出力短期预报的原理、方法以及国内外研究现状进行了总结;最后指出风电场出力短期预报研究中存在的问题和今后的研究方向。 Wind power is the strongest growing form of re- newable energy and an ideal pollution-free electric power. But wind power is fluctuant, intermittent and stochastic. The large capacity wind power connected with the power grid will bring austere challenge to the safety and stabiliza- tion of power system operation Short-term wind power pre- diction is an efficient approach. This paper discussed the partition of wind power prediction. Based on lots of litera- ture and the author's work, combined with China's situa- tion, the sense and necessity of short-term wind power pre- diction are analyzed. The principle, method and status quo of short-term wind power prediction are summarized. The existent problem and research direction are discussed.
出处 《现代电力》 2007年第5期6-11,共6页 Modern Electric Power
关键词 风力发电 短期预报 原理方法 研究现状 存在 问题 wind power short-term prediction principleand method status quo existent question
  • 相关文献

参考文献21

  • 1Garrad Hassan&Partners Ltd. Forecasting Short- Term Wind Farm Production. http: //www. garradhassan.com.
  • 2Peter Coppin, Jack Katzfey. The Feasibility of Wind Power Production Forecasting in the Australian Con text [R]. CSIRO Atmospheric Research. Report to: National Electricity Market Management Company Limited, 2003, 12.
  • 3杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:585
  • 4The ANEMOS Project: next generation forecasting of wind power, http: //anemos. cma. fr.
  • 5Thanasis G Barbounis, John B Theochairs, Minas C. Alexiadis, et al. Long-term Wind Speed and Power Forecasting Using Local Recurrent Neural Network Models [J]. IEEE Transactions on Energy Conversion, 21 (1), 2006, 3.
  • 6Landberg L. Short-term Prediction of Local Wind Conditions [J]. Journal of Wind Engineering and Industrial Aerodynamics. 2001, 89: 235-245.
  • 7Landberg L. Short-term Prediction of the power produc tion from wind farms [J]. Journal of Wind Engineering and Industrial Aerodynamics. 1999; 80: 207 - 220.
  • 8Pinson P, Siebert N, Kariniotakis G. Forecasting of Regional Wind Generation by a Dynamic Fuzzy-Neural Networks Based Upscaling Approach[C].European Wind Energy Conference&Exhibition EWEC 2003, Madrid.
  • 9George Kariniotakis. Next Generation Short-term Forecasting of Wind Power-Overview of the Anemos Project[C].European Wind Energy Conference, Athens, 27 Feb. -2 Mar. 2006.
  • 10Dr. Matthias Lange, Dr. Ulrich Focken, Germany. State-of-the-art in wind power prediction in Germany and international developments, http: //www. iset. uni-kassel. de

二级参考文献24

  • 1李晶,宋家骅,王伟胜.大型变速恒频风力发电机组建模与仿真[J].中国电机工程学报,2004,24(6):100-105. 被引量:274
  • 2杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:585
  • 3Alexiadis M, Dokopoulos P, Sahsamanoglou H et al. Short term forecasting of wind speed and related electrical power[J]. Solar Energy, 1998, 63(1): 61-68.
  • 4Bossanyi E A. Short-term wind prediction using Kalman filters[J]. WindEngineering, 1985, 9(1): 1-8.
  • 5Kamal L, Jafri Y Z. Tume series models to simulate and forecast hourly averaged wind speed in Wuetta, Pakistan[J]. Solar Energy, 1997,61(1): 23-32.
  • 6Kariniotekis G, Stavrakakis G, Nogaret E. Wind power forecasting using advanced neural network models[J]. IEEE Trans Energy Conversion, 1996, 11(4): 762-767.
  • 7楼顺天 施阳.基于MATLAB的系统分析与设计--神经网络[M].西安:西安电子科技大学出版社,2000..
  • 8Landberg L.Short-term prediction of the power production from wind farms[J].Journal of Wind Engineering and Industrial Aerodynamics,1999,80:207-220.
  • 9Landberg L.Short-term prediction of local wind conditions[J].Journal of Wind Engineering and Industrial Aerodynamics,2001,89:235-245.
  • 10Alexiadis M,Dokopoulos P,Sabsamanoglou H,et al.Short term forecasting of wind speed and related electrical power[J].Solar Energy,1998,63(1):61-68.

共引文献595

同被引文献712

引证文献72

二级引证文献973

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部