期刊文献+

一阶偏微分方程完全积分概念的起源 被引量:4

A study on the origin of the complete integral of a first-order partial differential equation
在线阅读 下载PDF
导出
摘要 目的探讨和分析拉格朗日(Joseph Louis Lagrange,1736—1813)重新定义一阶偏微分方程完全积分概念的原因和背景。方法历史分析和文献考证。结果拉格朗日从欧拉的完全积分定义出发,在用常数变易法探讨一阶偏微分方程积分的过程中受到启发,萌生了关于积分"完全性"的新思想。随后,他把这种新思想运用于常微分方程,成功解释了奇解现象,受此驱动,提出了一阶偏微分方程完全积分的新定义。结论拉格朗日的完全积分新定义是他追求方程一般性解法的体现和产物。 Aim To explore the reasons why Lagrange redefined the concept of the complete integral of a first-order partial differential equation.Methods Historic analysis and literature review.Results Lagrange hit upon the new idea to redefine the complete integral when he received the inspiration from his study on the first-order partial differential equation with the method of variation of constants.When he used this new idea to research the ordinary differential equation,he explained the singular integral successfully.Inspired by his method,Lagrange formally put forward his new concept of the complete integral.Conclusion Lagrange's new definition showed his spirits of pursuing the general solution of the partial differential equation.
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期675-679,共5页 Journal of Northwest University(Natural Science Edition)
基金 全国教育科学"十五"规划重点课题国家一般课题资助项目(BHA050023)
关键词 拉格朗日(Joseph Louis Lagrange 1736—1813) 一阶偏微分方程 完全积分 常数变易法 奇解 Lagrange(1736-1813) first-order partial differential equation complete integral variation of constants singular solution
  • 相关文献

参考文献9

  • 1史捷班诺夫 B B.微分方程教程[M].卜元震,译.北京:人民教育出版社.1955:359-382.
  • 2EULER L.Leonhardi Euleri Opera Omnia[M].Leipzig-Berlin:Birkhauser,1914.
  • 3LAGRANGE J L.Oeuvres de Lagrange.Vol.Ⅲ[M].Paris:Ganthier-Villars,1869:549-575.
  • 4LAGRANGE J L.Oeuvres de Lagrange.Vol.Ⅳ[M].Paris:Gauthier-Villars.1869:5-108.
  • 5曲安京.中国数学史研究范式的转换[J].中国科技史杂志,2005,26(1):50-58. 被引量:59
  • 6ENGELSMAN J L.Lagrange's early contributions to the theory of first-order partial differential equations[J].Historia Mathematica,1980,7:7-23.
  • 7克莱因 M.古今数学思想[M].上海:上海科学技术出版社,2002.
  • 8LAGRANGE J L.Oeuvres de Lagrange.Vol.Ⅳ[M].Paris:Gauthier-Villars,1869:585-635.
  • 9LAGRANGE J L.Oeuvres de Lagrange.Vol.Ⅴ[M].Paris:Gauthier-Vilhrs.1869:543-562.

二级参考文献7

  • 1迈尔 涂长晟 译.生物学思想发展的历史·绪论[M].成都:四川教育出版社,1990..
  • 2Qu Anjing. Perche la matematica nella Cina antica? [ A ]. Emmer Michele (ed). Matematica e Cultura 2003 [ C ]. Milan:Springer-Verlag, 2003. 205 - 217 .
  • 3Wu Wen-tsun. Mathematics Mechanization[ M]. Beijing: Science Press, Dorrecht: Kluwer Academic Publishers, 2000.1 -66.
  • 4Poincare H. L'Avenir des Mathematiques [ A ]. Proceedings of the International Congress of Mathematicians, Rome 1908[C]. Vol. Ⅰ . Castelnuovo G (ed). Rome: Tipografia della R. Accademia dei Lincei, 1909. 167.
  • 5Weil A. History of Mathematics: Why and How[ A]. Proceedings of the International Congress of Mathematicians, Helsinki 1978 [ C ]. Helsinki : Academia Scientiarum Fennica, 1980. 236.
  • 6Mayr E. The Growth of Biological Thought: Diversity, Evolution and Inheritance[ M]. Cambridge: Harvard University Press, 1982.
  • 7曲安京.中国数学史研究的两次运动[J].科学,2004,56(2):27-30. 被引量:4

共引文献62

同被引文献26

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部