期刊文献+

激光主动探测中回波信号的小波去噪方法 被引量:2

De-Noising Method Based on Wavelet Transform in Active Laser Detection
在线阅读 下载PDF
导出
摘要 在分析激光主动探测中回波信号的噪声特性和小波变换去噪原理的基础上,提出了一种基于最大信噪比准则的小波阈值去噪方法。首先用最大信噪比准则对小波变换系数进行阈值选取,然后采用软阈值方法对小波系数进行量化处理后再重构。仿真结果表明最大信噪比准则小波去噪方法改善信噪比效果十分显著,检测下限达到-16.2dB。证明了该方法在激光主动探测系统回波信号检测中的有效性。 Based on the analysis of noise characteristics and wavelet transform de-noising principle, a novel wavelet de-noising method based on maximal SNR principle is proposed. Maximal SNR principle is used to select the threshold and then soft-threshold method is used to quantify the wavelet coefficient. The simulation results show that maximal SNR principle method has an important effect on SNR improvement and it can detect signal in 16. 2 dB SNR. The results also show its validity in active laser detection.
作者 熊飞 张晔
出处 《光学与光电技术》 2007年第6期72-74,共3页 Optics & Optoelectronic Technology
关键词 激光主动探测 小波变换 最大信噪比准则 软阈值方法 active laser detection wavelet transform maximal SNR principle soft-threshold method
  • 相关文献

参考文献4

  • 1[1]E P Gordov.Basic and application detection of weak signal[C].SPIE,2003,3485:583-586.
  • 2[2]Liang Zhang,Demin Wang,Andre Vincent.Adaptive SPIHT for image coding based on cured wavelet transform[C].SPIE,2002,5685:160-163.
  • 3林克正,李殿璞.基于小波变换的去噪方法[J].哈尔滨工程大学学报,2000,21(4):21-23. 被引量:33
  • 4[4]Girish Ganesan.Space-time Block Codes:A Maximum SNR Approach[J].IEEE,2001,(37):1650-1656.

二级参考文献6

  • 1 STRANG G,NGUYEN T.Wavelets and filterbanks[M].Wellesley-Camb ridge Press,1996.
  • 2 DONOHO D L.Denoising by soft thresholding[J].IEEE Trans on In form Theory,1995,41(5):613-627.
  • 3 DONOHO D L,JOHNSTONE I M.Ideal spatial adaptation by wavele t shrinkage[J].Biometrika,1994,81(9):425-455.
  • 4 DONOHO D L,JOHNSTONE I M,KERKYACHARIAN G,et al.Wavelet shrinkage:A sy mptopia[J].Journal of the Royal Statistical Society,Series B,1995,7(2):301-36 9.
  • 5 DONOHO D L,JOHNSTONE I M.Adapting to unknown smoothness by wavelet s hrinkage[J].Journalof the American Statistical Association,1995,90(432):1200- 1224.
  • 6 MALLAT S.A theory for multiresolution signal decomposition:the wav e letrepresentation[J].IEEE Trans.on Pattern Analysis and Machine Intelligence, 1989,11(7):674-693.

共引文献32

同被引文献17

  • 1段晓杰,王宝珠,潘洪刚.基于LabVIEW技术的虚拟小波消噪仪设计[J].国外电子测量技术,2005,24(8):18-21. 被引量:3
  • 2刘院芳,杨先麟.小波变换的Mallat算法在LabVIEW中的实现[J].国外电子测量技术,2006,25(9):45-47. 被引量:3
  • 3郭滨滨.快速傅里叶变换信号识别能力分析[J].现代电子技术,2007,30(7):58-60. 被引量:4
  • 4DONOHO D. De-noising by soft-thresholding [J]. IEEE Transactions Information Theory, 1995, 41 (3) :613-627.
  • 5文鸿雁.基于小波理论的变形分析模型研究[D]武汉大学,武汉大学2004.
  • 6Zhang Liang,Wang Demin,Vincent A.AdaptiveSPIHT for Image Coding Based on Cured Wavelettransform. Proceedings of SPIE the International Society for Optical Engineering . 2002
  • 7Berkner K,Wells R.Smoothness Estimates forSoft-threshold Denoising via Translation-invariantWavelet Transforms. Applied and Computation-al Harmonic Analysis . 2002
  • 8Stephane Mallat,Wen Liang Hwang.Singularity detection and processing with wavelets. IEEE Transactions on Information Theory . 1992
  • 9Xu Y,Weaver JB,Healy DM,et al.Wavelet transform domain filters: a spatially selective noise filtration technique. IEEE Transactions on Image Processing . 1994
  • 10Dohono DL.De-noising by soft-thresholding. IEEE Transactions on Information Theory . 1995

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部