期刊文献+

两个不同Sprott混沌系统的控制与同步研究 被引量:2

CONTROLLING AND SYNCHRONIZATION OF TWO DIFFERENT SPROTT CHAOTIC SYSTEMS
在线阅读 下载PDF
导出
摘要 首先采用线性反馈方法来控制混沌的SprottC系统和混沌的SprottF系统,使这两个混沌系统的轨道被控制到他们各自的每一个平衡点.然后使用主动控制方法来同步这两个不同的混沌系统,使混沌的SprottC系统和SprottF系统的轨道重合.并用数值模拟证实了理论的正确性. Firstly, the chaotic Sprott C system and Sprott F system were controlled by using linear feedback. And the chaotic orbits of the two systems were stabilized to equilibrium. Secondly, the synchronization between the two different Sprott chaotic systems was achieved by using active control. And their orbits were completely identical. Thirdly, simulation results were given to demonstrate the effectiveness of the proposed methods.
作者 徐登国
出处 《动力学与控制学报》 2007年第4期330-333,共4页 Journal of Dynamics and Control
关键词 Sprott系统 混沌控制 线性反馈 混沌同步 主动控制 Sprott system, chaotic control, linear feedback, chaotic synchronization, active control
  • 相关文献

参考文献9

  • 1[2]Hubler A,Luscher E.Resonant stimulation and control of nonlinear osclators.Nature,1989,76:67 ~ 71
  • 2[3]Ott E,Grebogi C,Yorke J.Controlling chaos.Physics Review Letters,1990,64:1196 ~ 1199
  • 3[4]Teh Lu Liao,Sheng Hung Lin.Adaptive control and synchronization of Lorenz systems.Journal of the Franklin Institute,1999,336:925 ~ 937
  • 4[5]Pyragas K.Continuous control of chaos by self-controlling feedback.Physics Letter,1992,A170:421 ~ 428
  • 5[6]Sun J T,Zhang Y P,Wu Q D.Impulsive control for the stabilization and synchronization of Lorenz systems.Physics letters A,2002,298:153 ~ 160
  • 6[7]Pecora LM,Carroll TM.Synchronization of chaotic systems.Phys Rev Lett,1990,64 (8):821 ~824
  • 7[9]Yassen MT.Adaptive control and synchronization of a modified Chua's circuit system.Applied Mathematics and Computation,2001,135:113 ~ 128
  • 8[10]Sprott JC.Some simple chaotic flows.Physics Review,1994,E50:647~671
  • 9[11]Zhang F,Heidel J.Non-chaotic behavior in three-dimensional quadratic systems.Nonlinearity,1997,5 (10):1289 ~ 1303

同被引文献12

  • 1EOtt,C Grebogi and J A Yorke.Controlling chaos.Phys.Rev.Lett,1990,64:1196 ~ 1199
  • 2U Dressier and G.Nitsche.Controlling chaos using time de-lay coordinates.Phys.Rev.Lett,1992,68:1~4
  • 3T Shinbrot,C Grebogi,E Ott and J A Yorke.Using small perturbations to control chaos.Nature,1993,363:411 ~ 417
  • 4E R Weeks and J M Burgess.Evloving artificial neural net-works to control chaos.Phys.Rev.E,1997,56:1531 ~ 1540
  • 5M Ashhab,M V Salapaka and I Mezic.Control of Chaos in Atomic Force Microscopes.Proceeding of the American Control Conference,Albuquerque,New Mexiee,1997:196 ~ 202
  • 6M Basso,L Giarre,M Dahleh and I Mezic.Complex dynam-ics in a harmonically excited Lennard-Jones oscillator:mi-crocantilever-sample interaction in scanning probe micro-scopes.Journal of Dynamic Systems,Measurement and Con-trol,2000,122:240~245
  • 7王靖岳,王浩天.飞轮调速器反馈控制系统的混沌及控制[J].动力学与控制学报,2008,6(2):134-137. 被引量:1
  • 8孙宁,张化光,王智良.不确定分数阶混沌系统的滑模投影同步[J].浙江大学学报(工学版),2010,44(7):1288-1291. 被引量:23
  • 9仲启龙,邵永晖,郑永爱.分数阶混沌系统的主动滑模同步[J].动力学与控制学报,2015,13(1):18-22. 被引量:32
  • 10付景超,孙敬,李鹏松.一类简单二次非线性Sprott混沌系统的分析与控制[J].吉林大学学报(理学版),2015,53(3):395-400. 被引量:9

引证文献2

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部