期刊文献+

基于环面自同构的公钥加密方案的密码分析

Cryptanalysis of a Public Key Encryption Scheme Based on Torus Automorphisms
在线阅读 下载PDF
导出
摘要 基于环面自同构的强混沌特性,Kocarev提出了一种公钥加密方案。理论分析表明,离散环面自同构与剩余类环上Chebyshev多项式相联系。作者进而揭示出该方案并非一个新方案,而是LUC系统的一个特例。同时,实验测试表明,Kocarev提到的算法并未使该方案具有更高的效率。 Based on strong chaoticity of the torus automorphisms, a public key encryption scheme is proposed by L. Kocarev. Theoretical analysis shows that discrete torus automorphism is related to Chebyshev polynomial, and the scheme is not a novel scheme but a special case of LUC system. Meanwhile, experiment test shows that the algorism proposed by Kocarev cannot make the scheme possess higher efficiency.
作者 张林华 陈勇
出处 《计算机科学》 CSCD 北大核心 2007年第12期91-93,共3页 Computer Science
关键词 环面自同构 切比雪夫多项式 混沌 公钥加密 Torus automorphism, Chebshev polynomial, Chaos, Public key encryption
  • 相关文献

参考文献14

  • 1Guan P. Cellular automaton public-key cryptosystem. Complex System, 1987,1: 51-57
  • 2Fengl H. The Interpolating Random Spline Cryptosystem and the Chaotic-Map Public-key Cryptosystem [D]. University of Missouri-Rolla, 1993
  • 3Tenny Y R, Tsimring L. Additive Mixing Modulation for Public Key Encryption Based on Distributed Dynamics[J]. IEEE Trails Circuits Syst Ⅰ, 2005,52:672-679
  • 4Kocarev L, Tasey Z. Public-key encryption based on Chebyshev maps[A]. In: Proc. 1-th Int Circuit and Syst Symp [C], 2003. 25-28
  • 5Bergamo P, Arco P. Security of public key cryptosystems based on Chebyshev polynomials [J]. IEEE Trans Circuits Syst Ⅰ, 2005, 52:1382-1393
  • 6Ruanjan B. Novel public key encryption technique based on multiple chaotic systems [J]. Phys Rev Lett, 2005, 26:098702
  • 7Wang K, Pei W, Zhou L, et al. Security of public key encryption technique based on multiple chaotic system [J]. Phys Lett A, 2006,360:259-262
  • 8Zhang LH. Cryptanalysis of the public key encryption based on multiple chaotic systems [J]. Chaos, Solitons & Fractions
  • 9Kocarev L, Sterjev M. Public key encryption scheme with chaos [J]. Chaos, 2004, 14:1078-1081
  • 10王大虎,魏学业,柳艳红.Chebyshev多项式的公钥加密和身份认证方案的研究[J].北京交通大学学报,2005,29(5):40-42. 被引量:5

二级参考文献17

  • 1BruceSchneier.应用密码学[M].北京:机械工业出版社,2000..
  • 2Kocarev L, Tasev Z. Public-Key Encryption Based on Chebyshev Maps[ J ]. ISCAN '03 Proceedings of the 2003 International Symposium, 2003,3(3) :Ⅲ-28-Ⅲ-31.
  • 3Xiao D, Liao X, Tang G,et aI. Using Chebyshev Chaotic Map to Construct Infinite Length Hash Chains[J ]. ISCAS'04 Proceedings of the 2004 International Symposium ,2004,1(5) : 11 - 12.
  • 4Xiao D, Liao X, Wong K. An Efficient Entire Chaos-Based Scheme for Deniable Authentication [ J ]. Chaos,Solitons and Fractals,2005,23(4):1327- 1331.
  • 5Kocarev L. Chaos-Based Cryptography: A Brief Overview[J].Circuits and Systems Magazine, IFEE,2001,1(3) :6- 21.
  • 6Kocarev L, Sterjev M, Amato P. RSA Encryption Algorithm Based on Toms Automorphisms[ J ]. ISCAS '04 Proceedings of the 2004 International Symposium,2004,4(5) :IV-577-80.
  • 7Kohda T, Fujisaki H. Jacobian Elliptic Chebyshev Rational Maps[J]. Physica D,2001,148(3) :242 - 254.
  • 8Kocarev L, Tasev Z. Public-Key Encryption Based on Chebyshev Maps[A]. Proceedings of the 2003 IEEE International Symposium on Circuits and Systems, Volume 3[C]. New York. IEEE, 2003.28- 31.
  • 9Pina Bergamo, Paolo D' Arco, Alfredo De Santis, et al. Security of Public Key Cryptosysterns based on Chebyshev Polynomials[EB/OL]. http://citebase, eprints, org, 2004-8-25.
  • 10G' erard Maze. Algebraic Methods for Constructing oneway Trapdoor Functions[D]. Notre Dame: University of Notre Dame, 2003.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部