期刊文献+

分块矩阵的张量积及其并行计算

Tensor product of block matrix and its parallel computing
在线阅读 下载PDF
导出
摘要 矩阵张量积的计算是矩阵计算中的一类重要问题,与乘法相比,张量积的计算量更为庞大。分析了分块矩阵张量积的相关数学特性,证明了在置换相抵意义下两个矩阵的张量积运算可以交换,特别刻画了这类置换矩阵,并由此证明了在置换相抵条件下分块矩阵可以分块地进行张量积运算。在此基础上,讨论了矩阵张量积的并行计算问题,提出了几种并行计算模型,进行了必要的算法分析,并通过实例阐述了这些算法的思想和过程。 The matrix tensor product computation is important in matrix computation. Compared with its multiplication, the computing amount of tensor product is huger. Based on analyzing its mathematical properties. It is proved that two matrix tensor operation can be exchange at permuted similar and this kind permutation matrix is portrayed. Thus, the conclusion is obtained that tensor product of block matrixes can blocks to calculate at permuted similar. Based on these, parallel computing problem of matrix tensor product is discussed, some parallel computing models are presented, the algorithm complexity is analyzed, and the thought and process are elaborated by an example.
出处 《计算机工程与设计》 CSCD 北大核心 2007年第23期5591-5594,共4页 Computer Engineering and Design
基金 江西省自然科学基金项目(0411030)
关键词 分块矩阵 张量积 置换相抵 并行算法 计算复杂性 block matrix tensor product permuted similar parallel algorithms computational complexity
  • 相关文献

参考文献5

二级参考文献17

  • 1郑雪雪.数据安全与软件加密技术[M].人民邮电出版社,1995..
  • 2魏立峰 李晓梅.分布式环境下并行求解对称带状矩阵特征问题的分治算法.第五届全国并行计算学术会议[M].,..
  • 3陈国良.片行计算—结构、算法、编程[M].北京:高等教育出版社,1999..
  • 4Meyer C H, Matyas S M. Cryptograhy: A New Dimension in Computer Data Security-A Guide for the design and Implementa tion of Secure Systems. John Wiley & Sons, Inc, 1982
  • 5Gabidulin E M, Paramonov A V, Tretjakov. Ideals over a noncommutative ringand their application in cryptology. In: Lecture Notes in Computer Science 547, Springer-verlag, 1991. 482~489
  • 6Gibson J K. Severely denting the Gabidulin version of the McEliece public key cryptosystem. Designs, Codes and Cryptog raphy, 1995,6:37~45
  • 7Blackford L, Choi J, Cleary A, et al. ScaLAPACK Users's Guide.SIAM, USA, 1997.
  • 8Hendrickson B, Jessup E, Smith C. Toward an Efficent Parallel Eigensolver for Dense Symmetric Matrices. SIAM J. Sci. Compute,1999, 20(3): 1132-1154.
  • 9Rabense R, Wellein G. Communication and Optimization Aspects of Parallel programming Models on Hybrid Architecture. International Journal of High performance Computing Applications, 2003, 17(1):49-62.
  • 10Zhao Yonghua, Chen Jiang, Chi Xuebin. Solving the Symmetric Tridiagonal Eigenproblem Using MPI/OpenMP Hybrid Parallelization. Lecture Notes in Computer Science, 2005, 3756:164-173.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部