期刊文献+

基于自组织特征映射网络的模糊矢量量化算法 被引量:1

在线阅读 下载PDF
导出
摘要 自组织特征映射(SOFM)是一种常用的矢量量化算法,它具有设计码书不依赖于初始码书等优点。模糊矢量量化算法(FVQ)将模糊关系引入码书的设计,训练矢量与码矢之间的模糊关系用隶属函数表示。本文提出了一种基于自组织特征映射网络的模糊矢量量化算法(FSOFM),FSOFM算法将SOFM网络的调节节点邻域看作训练矢量的模糊集,网络权值学习步长的选择依赖于隶属函数。由于设计码书的评价一般采用最小均方误差准则,而隶属函数是训练矢量与码矢之间距离的函数,FSOFM算法保证了网络的全局成优化和网络权值的局部调整一致;因此,FSOFM算法能够优化码书的设计,改善设计码书的性能。此外,FSOOFM算法还具良好的适应性,当网络的将LBG、SOFM、FVQ和FOSOFM算法用于一组具有不同边缘特性的图像的矢量量化中,我们发现采用FSOFM算法进行矢量量化的所有图像都具有最高的峰值信噪比PSNR。 Fuzzy vector quantization algorithms (FVQ) allow that each theining vector is assigned to multiple clusters, and a training vector translates from the fuzzy mode to the crisp mode according to an assignment strategy in a codebook design proccess. FVQ reduces the dependence of the resulting codebook on the random initial codebook selection, but FVQis not an iterative algorithm, because a codebook is modified afer all training vectors complete once iteration. This paper presents iterative fuzzy vector quantization algorithm (FSOFM) based on Self - Organizing Feature Map net, which inherits the advantages of SOFM and proposes a new strategy of the net weights modificatio.Such a strategy modifies the net wieghts according to a propsoed membership function and a training vector which just complete an iteration. In this paper, LBG, FVQ, SOFM, FSOFM are used in image compression based on vector quantization. We evaluate the computational efficiency of the proposed algorithms and the quality of the resulting codebook, and conclude that FSOFM is much better than other algorithms in many fields.
作者 胡勇 谈正
出处 《微型电脑应用》 1997年第4期40-43,共4页 Microcomputer Applications
关键词 码书 码矢 模糊系统 矢量量化 算法 FVQ codebook codevector fuzzy relation fuzzy set membership function SOFM
  • 相关文献

同被引文献23

  • 1Timo Kaukoranta,et al.A fast exact gla based on code vector activity detection[J].IEEE Trans.on Image Processing,2000,9(8),1337-1342.
  • 2Y.Linde,A.Buzy,R.M.Gray,An algorithm for vector quantizater design[J].IEEE Trans. On Commu,1980,28(1):55-66.
  • 3Chok-Ki Chan,et al.A complexity reduction technique for image vector quantization[J].IEEE Trans.on Image Processing,1992,1(7):312-321.
  • 4W.H.Equitz.A new vector quantization clustering algorithm[J].IEEE Trans.on acoustics speech signal processin,1989,(37):1568-1575.
  • 5Chok-Ki Chan,et al.A fast method of designing better codebooks for image vector quantization[J].IEEE Trans.on Commun.,1994,2(2/3/4):237-242.
  • 6Kohonen T.Self-organization and associative memory[M].Third Edition.Berlin:Springer-Verlag,1989.
  • 7Y.C.Lin and S.C.Tai.Fast vector quantization of image coding using integral equations.in Proc.Nat.Computer Symp.,vol.42,1994,2/3/4,208-210,1994,2/3/4.
  • 8C.D.Bei and R.M.Gray.An improvement of the minimum distortion encoding algorithm for vector quantization[J].IEEE Trans.Commun.,vol.COM-33,1985,10:1132-1133.
  • 9Kuang-Shyr et al.Fast vq encoding by an efficient kick-out condition[J].IEEE Trans.on circuits and systems for video technology,vol.10,no.1,2000,(2):59-62.
  • 10L.Torres and J.Huguet.An improvement on codebook search for vector quantization[J].IEEE Trans.on Communications,vol.42,1994,2/3/4,208-210.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部