期刊文献+

(2+1)维拟线性热方程的不变集和精确解 被引量:5

Invariant sets and solutions to (2+1) dimensional quasilinear heat equation
在线阅读 下载PDF
导出
摘要 目的研究带有反应项的(2+1)拟线性热方程ut=A(u)(uxx+Nx-1ux)+B(u)(uyy+N-1yuy)+C(u)u2x+D(u)u2y+Q(u)的精确解问题。方法运用推广的不变集E0={u:ux=vxF(u),uy=vyF(u)}求(2+1)维拟线性热方程的精确解。结果给出(2+1)维拟线性热方程的一些特殊解。结论此方法是(1+1)维拟线性热方程的推广。 Aim To study the exact solutions of (2 + 1 ) dimensional quasilinear heat equation ut=A(u)(uxx+N-1/xux)+B(u)(uyy+N-1/y uy,)+C(u)ux^2+D(u)uy^2+Q(u)Methods Utilize the extended invariant set E0 ={u:ux=vxF(u),uy=vyF(u)}to obtain the exact solutions of (2 + 1 ) dimensional quasilinear heat equation.Results Some special exact solutions associated to the equation are obtained. Conclusion It is an extension to ( 1 + 1 ) dimensional quasilinear heat equation.
机构地区 西北大学数学系
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第6期974-976,共3页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(10671156)
关键词 伸缩群 旋转群 不变集 精确解 scaling group rotation group sign-invariant exact solution
  • 相关文献

参考文献7

  • 1唐亚宁,徐伟,李伟.推广的BBM方程行波解[J].西北大学学报(自然科学版),2006,36(4):525-528. 被引量:5
  • 2QU Chang-zheng, LI Ling, DON Li-hong. Exact sohctioy and generalizd conditional symmetries to ( n + 1 ) -dimensional nonlinear diffasim equations with source term[J]. Physcics Letters A ,2005,343 : 139-147.
  • 3GALAKTIONOV V A. Groups of scatings and invariant sets fou higher-order nonlinear evolution equation [ J ]. Differential Integeral Equations, 2001,14: 913-924.
  • 4GALAKTIONOV V A. Ordered invariant sets for nonlinear evolutions of KdV-type[J]. Comput Math Phys, 1999,39: 1 564-1 570.
  • 5QU C Z, ESTEVEZ P G. Extended rotation and scaling groups for nonlineat evolution equations[J]. Nonlinear Anal,2003, 52 : 1 655-1 673.
  • 6QU C Z. Symmetries and solutions to the thin film equations[J]. J Math Anal Appl,2006,317:381-397.
  • 7ZHU C R, QU C Z. Invariant sets and solutions to higherdimensional reaction-diffusion equation with source term[J]. Phys Lett A,2006, 354:437 -444.

二级参考文献9

  • 1FU Zun-tao, LIU Shi-kuo, LIU Shi-da, et al. The JEFE method and periodic solutions of two kinds of nonlinear wave equations[J]. Communications in Nonlinear Science and Numerical Simulation,2003, (8) :67-75.
  • 2CHEN Yong, LI Biao,ZHANG Hong-qing. Exact solutions for two nonlinear wave equations with nonlinear terms of any order[J]. Communications in Nonlinear Science and Numerical Simulation ,2005 , (10) :133-138.
  • 3CHOW S N, HALE J K. Method of Bifurcation Theory[M]. New York : Springer-Verlag, 1981.
  • 4PERKO L. Differential Equations and Dynamical Systems[M]. New York : Springer-Verlag, 1991.
  • 5DOGAN K. A numerical simulation of solitary-wave solutions of the generalized regularized long-wave equation[J]. Applied Mathematics and Computation, 2004,(149) :833-841.
  • 6YAN C. Regularized long wave equations and inverse scattering transform [J]. J Math Phys, 1993, ( 24 ) :2 618-2 630.
  • 7LI Ji-bin, LI Hong, LI Shu-min. Bifurcations of travelling wave solutions for the generalized Kadomtsev-Petviashili equation [J]. Chaos Solitons and Fractals, 2004, ( 20 ) :725-734.
  • 8SHEN Jian-wei, XU Wei, LEI You-ruing. Smooth and non-smooth travelling waves in a nonli-nearly dispersive Boussinesq equation [J]. Chaos Solitons and Fractals,2005, (23) : 117-130.
  • 9刘若辰,何文丽,张顺利,屈长征.非线性发展方程的一维最优系统(英文)[J].西北大学学报(自然科学版),2003,33(4):383-388. 被引量:2

共引文献4

同被引文献18

  • 1OIVER P J. Application of Lie Groups to Differential E- quations[ M ]. New York: Springer, 1993.
  • 2KARA A H, MAHOMED F.M. Noether-type symmetries and conservation laws via partial Lagrangians [ J ]. Non- linear Dynam ,2006,45. 367-383.
  • 3KARA A H, MAHOMED F. M, UNAL G Approximate symmetries and conservation laws symmetries with appli- cations [ J ]. Int J Theoret Phys, 1999, 38 ( 9 ) : 2389- 2399.
  • 4KARA A H. On the conserved quantities and associated symmetries for some classes of perturbed wave equations with non-linearities [ J ]. Int J Non-Linear Mech,2001,36: 125-30.
  • 5JOHNPILLAI A G, KARA A H, MAHOMED F M. Ap- proximate Noether-type symmetries and conservation laws via partial Lagrangians for PDEs with a small parameter [J]. J Comput Appl Math Phys,2009,223:508-518.
  • 6Galaktionov V A. Groups of scalings and invariant sets for higher-order nonlinear evolution equation[J]. Differential Integeral Equations, 2001,14:913-924.
  • 7Galaktionov V A. Ordered invariant sets for nonlinear equations of KdV-type[J]. Compute. Math. Phys., 1999,39:1564-1570.
  • 8Qu C Z, Estevez P G. Extended rotation and scaling groups for nonlinear evolution equations[J]. Nonlinear Anal. TMA., 2003,52:1655-1673.
  • 9Zhu C R, Qu C Z. Invariant sets and solutions to higher-order reaction diffusion equation with source term[J]. Phys. Lett. A, 2006,354:437-444.
  • 10Qu C Z. Symmetries and solutions to the thin film equations[J]. Math. Anal. Appl., 2006,317:381-397.

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部