期刊文献+

球面四元三角网的三拓扑数计算 被引量:6

Computation of Three Topological Numbers on Spherical Quaternary Triangular Mesh
在线阅读 下载PDF
导出
摘要 讨论了任意球面三角格网p的三拓扑数计算。任意球面三角格网p的三拓扑数是指和该球面三角格网互为三邻近的目标球面三角格网的个数,它是讨论球面栅格区域局部拓扑不变量的重要参数,也是描述和推断球面栅格拓扑关系首先要解决的问题。 Spherical QTM (quaternary triangular mesh) is efficient to deal with the global data because of its advantages of multi-resolution and hierarchy. Computation of three topological numbers on spherical QTM is presented. Three topological numbers of any triangles is the numbers of 3-neighbor to the triangle, which is the base of computing topological relation of Spherical QTM.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2008年第1期60-63,104,共5页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(40701152,40471108)
关键词 球面四元三角网 三邻近 三拓扑数 spherical QTM 3-neibhour three topological numbers
  • 相关文献

参考文献9

  • 1Dutton G. Polyhedral Hierarchical Tessellations: The Shape of GIS to Come[J]. Geolnfo Systems, 1991,1(3) : 49-55
  • 2Goodchild M F, Yang Shiren. A Hierarchical Data Structure for Global Geographic Information Systems[J]. Computer Vision, Geographic and Image Processing, 1992, 54(1): 31-44
  • 3White D, Kimberling A J, Sahr K, et al. Comparing Area and Shape Distortion on Polyhedral-based Recursive Partitions of the Sphere[J]. Int. J. Geographical Information Science, 1998, 12(8): 805-827
  • 4Bartholdi I I I, Goldsman P. Continuous Indexing of Hierarchical Subdivisions of the Globe[J]. Int. J. Geographical Information Science, 2001,15 (6) : 489- 522
  • 5Sahr K, White D, Kimerling A J. Geodesic Discrete Global Grid Systems[J]. Cartography and Geographic Information Science, 2003, 30(2): 121-134
  • 6Chen Jun, Zhao Xuesheng, Li Zhilin. Algorithm for the Generation of Voronoi Diagrams on the Sphere Based on QTM[J]. Photogrammetrie Engineering or Remote Sensing, 2003, 69(1) : 79-90
  • 7陈军,侯妙乐,赵学胜.球面四元三角网的基本拓扑关系描述和计算[J].测绘学报,2007,36(2):176-180. 被引量:8
  • 8侯妙乐,赵学胜,陈军.球面栅格空间中的Jordan曲线性质及其拓扑矛盾分析[J].武汉大学学报(信息科学版),2006,31(2):148-151. 被引量:3
  • 9Lee M, Samet H. Navigating Through Triangle Meshes Implemented as Linear Quadtree[R]. TR-3900, Department of Computer Science, University of Maryland, College Park, MD, 1998

二级参考文献19

  • 1侯妙乐,赵学胜,陈军.球面栅格空间中的Jordan曲线性质及其拓扑矛盾分析[J].武汉大学学报(信息科学版),2006,31(2):148-151. 被引量:3
  • 2Goodchild M F,Yang Shiren.A Hierarchical Data Structure for Global Geographic Information Systems[J].Computer Vision and Geographic Image Processing,1992,54(1):31-44
  • 3Chen Jun,Zhao Xuesheng,Li Zhilin.Algorithm for the Generation of Voronoi Diagrams on the Sphere based on QTM[J].Photogrammetric Engineering and Remote Sensing,2003,69(1):79-90
  • 4Bartholdi III,Goldsman P.Continuous Indexing of Hierarchical Subdivisions of the Globe[J].Int.J.Geographical Information Science,2001,15(6):489-522
  • 5Dutton G.Polyhedral Hierarchical Tessellations:the Shape of GIS to Come[J].Geographical Information Systems,1991,1(3):49-55
  • 6Li Zhilin,Li Yongli,Chen Yongqi.Basic Topological Models for Spatial Entities in 3-Dimensional Space[J].GeoInformatica,2000,4(4):419-433
  • 7Hou Miaole,Zhao Xuesheng,Chen Jun.Sphere Digital Space Based on Manifold:Definition,Properties and Applications[G].//Zhou Qiming,Li Zhilin.Spatial Analysis and Decision Support.Rotterdam:Balkema Publishers,2003
  • 8Hou Miaole,Zhao Xuesheng,Chen Jun.The Basic Topology Model of Spherical Surface Digital Space[C].Proceedings of 20th ISPRS Congress,Istanbul,2004
  • 9Rosenfeld A.Digital Topology[J].Am.Math.Month,1979,86:621-630
  • 10DUTTON G.Polyhedral Hierarchical Tessellations:The Shape of GIS to Come[J].Geographical Information Systems,1991,1(3):49-55.

共引文献8

同被引文献42

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部