期刊文献+

基于多重核学习支持向量机的歼击机故障诊断 被引量:3

Fighter fault diagnosis based on multiple kernel learning SVMs
在线阅读 下载PDF
导出
摘要 为了提高歼击机故障诊断的准确性与实时性,提出一种基于决策树型组合策略的多重核学习支持向量机诊断方法.决策树型组合策略利用树结构解决多分类问题.而多重核学习支持向量机通过混合核空间,将线性约束下二次规划问题转化为二次约束下二次规划问题.实验结果表明:多重核学习支持向量机的诊断精度明显优于标准支持向量机,且支持向量的数目也较少.决策树型组合策略的引入可以提高歼击机故障诊断的诊断速度.基于决策树型组合策略的多重核学习支持向量机方法能够准确且快速地解决歼击机故障诊断问题. Based on decision tree combined strategy and multiple kernel learning support vector machines, a new fault diagnosis method is proposed to improve the precision and speed of fighter fault diagnosis. The multi-class classification problem is solved by decision tree combined strategy. And multiple kernel learning support vector machines are able to translate linearly constrained quadratic programming into quadratic ally constrained quadratic programming by mixed kernel space. Simulation results indicate that the diagnosis precision by multiple kernel learning support vector machines is better than the standard support vector machines with less number of support vectors. Moreover, the introduction of decision tree combined strategy guarantees the diagnosis speed improvement. The proposed method can solve the fighter fault diagnosis problem accurately and rapidly.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第A01期1-5,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金重点资助项目(60234010) 航空科学基金资助项目(05E52031)
关键词 故障诊断 支持向量机 多重核学习 决策树 fault diagnosis support vector machines (SVM) multiple kernel learning decision tree
  • 相关文献

参考文献9

  • 1胡寿松,周川,胡维礼,陈庆伟,苏红云.基于RBF 神经网络观测器的非线性系统鲁棒故障检测方法(英文)[J].控制理论与应用,1999,16(6):853-857. 被引量:7
  • 2张军峰,胡寿松.基于聚类和支持向量机的非线性时间序列故障预报[J].控制理论与应用,2007,24(1):64-68. 被引量:22
  • 3Vapnik V.The nature of statistical learning theory[M].New York:Springer-Verlag,1995.
  • 4Hsu C,Lin C J.A comparison of methods for mufti-class support vector machines[J].IEEE Transactions on Neural Networks,2002,13 (2):415-425.
  • 5Lanckriet G R G,Bie T D,Cristianini N,et al.A statistical framework for genomic data fusion[J].Bioinformatics,2004,20(16):2626-2635.
  • 6Lanckriet G R G,Cristianini N,Bartlett P,et al..Learning the kernel matrix with semi-definite programming[J].Journal of Machine Learning Research,2004,5:27-72.
  • 7Sonnenburg S,R(a)tsch G,Sch(a)lkopf B.Large scale multiple kernel learning[J].Journal of Machine Learning Research,2006,7:1531-1565.
  • 8Boyd S,Vandenberghe L.Convex optimization[M].Cambridge:Cambridge University Press,2004.
  • 9Anderson E D,Anderson A D.The MOSEK interior point optimizer for linear programming[C]//High Performance Optimization.Berlin:Springer,2000:197-232.

二级参考文献13

  • 1阿尔文·托夫勒.力量的转移[M].北京:新华出版社,1996..
  • 2Young M C,IEEE Trans Automat Control,1997年,42卷,4期,534页
  • 3Hou M,Int J Control,1995年,60卷,5期,827页
  • 4江泽民.全国干部培训教材《序言》[N].人民日报,2002-04-22(1).
  • 5HO S L,XIE M.The use of ARIMA models for reliability forecasting and analysis[J].Computer & Industrial Engineering,1998,35(1-2):213 -216.
  • 6TSE P W,ATHERTON D P.Prediction of machine deterioration using vibration based fault trends and recurrent neural networks[J].J of Vibration & Acoustics,1999,121(7):355-362.
  • 7JAIN A K,MURTY M N.Data clustering:areview[J].ACM Computing Surveys,1999,31(3):264-323.
  • 8RICHARD O D,PETER E H,DAVID G S.Pattern Classification[M].Second Edition.New York:John Wiley & Sons,2002.
  • 9VAPNIK V N.The Nature of Statistical Learning Theory[M].New York:Springer,1995.
  • 10THISSENA U,BRAKELA R,et al.Using support vector machines for time series prediction[J].Chemometrics & Intelligent Laboratory Systems,2003,6(9):35 -49

共引文献27

同被引文献24

  • 1吴今培.基于核函数的主成分分析及应用[J].系统工程,2005,23(2):117-120. 被引量:28
  • 2Yi Chuijie, Cheng Daolai, Yao Hongyu, et al. Sound signal analyses on cockpit voice recorder based on cockpit sound decoding system [ C ]//ICDVC-2006. Beijing, China, 2006 : 119 - 122.
  • 3Chen Fei, Han Chongzhao. Time series forecasting based on wavelet KPCA and support vector machines [C ]//International Conference on Automation and Logistics. Jinan, China, 2007 : 1487 - 1491.
  • 4Yang Chihcheng, Lee Wanjui, Lee Shiejue. Learning of kernel functions in support vector machines[C ]//2006 International Joint Conference on Neural Networks. Vancouver, BC, Canada, 2006:16 -21.
  • 5Liu Huanjun, Wang Yaonan, Lu Xiaofen. A method to choose kernel function and its parameters for support vector machines [ C ]//Proceedings of the Fourth International Conference on Machine Learning and Cybernetics. Guangzhou, China, 2005:18-21.
  • 6VAPNIK V N, The nature of statistical learning theory [M]. 2nd ed. New York: Springer-Verlag, 1999:123 - 167.
  • 7BURGES C J C. A tutorial on support vector machines for pattern recognition [J]. Knowledge Discovery and Data Mining, 1998, 2(2): 121 - 167.
  • 8CASTELLINI C, SMAGT P. Surface SEMG in advanced hand prosthetics [J]. Biological Cybernetics, 2009, 100(1): 35-47.
  • 9LUCAS M F, GAUFRIAU A S, PASCUAL S. Multichannel surface SEMG classification using support vector machines and signal-based wavelet optimization [J]. Biomedical Signal Processing and Control, 2008, 3 ( 2 ) : 169 - 174.
  • 10LANCKRIET G, CRISTIANINI N, GHAOUI L E, et al. Learning the kernel matrix with semidefinite pro- gramming [J]. Journal of Machine Learning Research, 2004, 5(1): 27-72.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部