期刊文献+

一种求解瞬时涡流问题的新型有限元算法

A New Algorithm of the Nodal Finite Element Method for a Trancient Eddy Current Problem
在线阅读 下载PDF
导出
摘要 本文提出了一种求解瞬时涡流问题的新型有限元算法,并讨论了该算法的误差估计。此方法不仅更真实地模似物理背景条件,而且其计算格式又是一种解耦的形式,减少了计算量。 A new decoupled finite element method is suggested to approximate transcient eddy current equations in a three-dimensional polyhedral domain. This method is based on solving a vector and a scalar from the splitting of the electric field by using nodal finite elements. An optimal energy-norm error estimate in finite time is obtained by introducing a projection operator.
作者 李建军
出处 《中国传媒大学学报(自然科学版)》 2007年第2期23-28,47,共7页 Journal of Communication University of China:Science and Technology
关键词 瞬时涡流问题 节点有限元法 中心差分Crank—Nicholson 误差分析 eddy current problem nodal finite element method C-N difference scheme nodal elements, error estimate.
  • 相关文献

参考文献5

  • 1[1]P Ciarlet.The finite element method for elliptic problems[M].North-Holland,Amsterdam,1978.
  • 2[2]P Ciarlet,J Zou.Fully discrete finite element approaches for time-dependent Maxwell's epuations[J].Numerische Mathematik,1999(82):193-219.
  • 3[3]T Kang and K I Kim.An E-based splitting with a non-matching grid for eddy current equations with discontinuous coefficents[J].Appl Math Comp,2005(170):462-484.
  • 4[4]T Kang,K I,Kin Z Wu.An E-based splistting finite element method for time-dependent eddy current equatisons[J].J Comp Appl Math,2006(196):358-367.
  • 5李建军,康彤.求解瞬态涡流问题基于电场分解的有限元方法[J].中国传媒大学学报(自然科学版),2006,13(2):47-53. 被引量:1

二级参考文献5

  • 1[1]Ciarlet P.The finite element method for elliptic problens[M].North-Holland,Amsterdam,1978.
  • 2[2]Ciarlet P,Zou J.Fully discrete finite element approaches for time-dependent Maxwell's equations[J].Numerische Mathematik,1999,82:193-219.
  • 3[3]Kang T and Kim K I.An E-based splitting method with a non-matching grid for eddy current equations with discontinuous coefficients[J].Appl Math Comp,2005,170:462-484.
  • 4[4]Kang T,Kim K I,Wu Z.An E-based splitting finite element method for time-dependent eddy current equations[J].Comp Appl Math,in press.
  • 5[5]J C Nédélec.Mixed finite elements in R3[J].Numer Math,1980,35:315-341.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部