摘要
利用比较原理,通过构造L-拟上下解单调迭代过程,在L-拟上下解反向取定的情况下,研究了Banach空间中二阶Neumann边值问题-u″(t)=f(t,u(t),u(t)),u′(0)=u′(T)=0解的存在性,获得了该问题解的存在唯一性定理,并给出了唯一解近似序列的误差估计.
Using the comparison principle and monotone iterative technique, the existence of unique solution for the second order Neumann boundary value problem
{-u″(t)=f(t,u(t),u(t)),u′(0)=u′(T)=0
in Banach spaces is obtained, and the error estimate of iterative sequences of unique solution is also given, where the problems have L-quasi-upper and lower solutions in reversed order.
出处
《西北师范大学学报(自然科学版)》
CAS
2008年第1期6-9,共4页
Journal of Northwest Normal University(Natural Science)