期刊文献+

不同条件下拟合指数的表现及临界值的选择 被引量:34

Performance of Fit Indices in Different Conditions and the Selection of Cut-off Values
在线阅读 下载PDF
导出
摘要 在本模拟研究中设计了6种样本容量,6种因子载荷,和4种评分等级,并考察了正态和非正态分布两种情况。采用的错误模型为参数误置(真模型中每个因子各由5个题目来测量,错误模型中则是第一个因子由6个题测量,另两个因子各由4个和5个题来测量,即有一个因子载荷被误置)模型。结果发现(1)样本量、载荷量、评分等级数和分布形态都对GOF的取值确有影响。其中分布形态的影响最大。NNFI、IFI在不同条件下的平均值是最稳定的,其次是CFI、RMSEA和SRMR。它们都算是值得推荐的GOF,尤其是NNFI和IFI。(2)在正态分布中,当样本量≥1000时,根据NNFI、IFI、CFI、RMSEA、SRMR对模型是否拟合做出判断时有很低的两类错误率,在样本量<1000时则不理想。在偏态条件下无论选择哪个GOF两类错误率都很高。(3)采用2指数策略在很多情况下也不能显著降低两类错误率。(4)由于在数据分布非正态,或正态但样本量<1000时是难判断模型是否拟合的。因此我们提出了2界值策略。即为每个GOF确定上下两个界值。低于下界值时可判断模型是不正确的,而高于上界值时则可判断模型是正确的。GOF取值处于上下界值之间时难以判断模型是否拟合,只能说越高拟合的可能性越大。这时就要通过跨样本验证和增加样本量来确定模型是否正确。 In this simulation study we designed 6 sample - size conditions, 6 factor - loading conditions, 4 rating- category conditions, and 2 distribution conditions. To each data - set in the conditions a correct model and a mis - specified model are fitted. In the correct model there are 15 items and 3 factors, each factor is measured by 5 items. While in the mis - specified model the factors are measured by 6, 4, and 5 items, we call the mis - specified model wrong - parameterized model, which is different from those studied by former researchers. The results are: 1) Sample size, loading size, rating category and distribution form all have influence on the values of fit indices. And the influence of distribution form is the largest. The values of NNFI, IFI are most stable across all conditions, values of CFI, RMSEA and SRMR are less stable, but their variations are rather small, these 5 indices should be recommended. 2) In normal distribution conditions, when sample size≥1000, model right - wrong judgment based on NNFI, IFI, CFI, RMSEA, SRMR all have low two type error (α+β) rate. But distribution forms are non- normal and when sample size 〈 1000, α+β error rate cannot be reduced to satisfactory level. 3) 2-indices strategy recommended by Hu & Bentler(1999) cannot reduce α+β error rate significantly in many conditions. 4) Since model judgment is difficult when samples are small and distributions are non - normal, we present 2 - cutoff- value strategy. 2-cutoff- value strategy means, when the value of a model is lower than the low bound cut - off of the recommended indices, the model can be judged as wrong when the value of a model is higher than the upper bound cut - off of the recommended indices, the model can be judged as right, when the value of a model fall between lower and upper bound of the recommended indices, the model cannot be judged as right or wrong. When a model cannot be judged as right or wrong larger sample size and cross - validation of the model aJ:e needed before a clear conclusion can be drawn.
出处 《心理学报》 CSSCI CSCD 北大核心 2008年第1期109-118,共10页 Acta Psychologica Sinica
基金 辽宁师范大学省心理学重点实验室开放基金资助项目
关键词 结构方程模型 模型拟合 2指数策略 2界值策略 Structural Equation Modeling, model - data fit, 2 - indite strategy, 2 - cutoff- value strategy.
  • 相关文献

参考文献17

  • 1Bollen K A.Overall fit in covariance structure models:Two types of sample size effects.Psychological Bulletin,107,1990:256- 259.
  • 2J(o)reskog K G,S(o)rbom D.LISREL 8:User's reference guide.Chicago,IL:Scientific Software international,1996.
  • 3Tucker L R,Lewis C.There liability coefficient for maximum likelihood factor analysis.Psychometrika,1973,38:1 - 10.
  • 4Bentler P M,Bonett D G.Significance tests and goodness of fit in the analysis of covariance structures.Psychological Bulletin,1980,88:588 -606.
  • 5Bollen K A.A new incremental fit index for general structural equation models.Sociological Methods and Research,1989,17:303-316.
  • 6Bentler P M.Comparative fit indices in structural models.Psychological Bulletin,1990,107:238 - 246.
  • 7Steiger J H,Lind J M.Statistically-based tests for the number of common factors.Paper presented at the Psychometrika Society Meeting,Iowa City,M ay,1980.
  • 8Bentler P M.EQS structural equations program manual.Encino,CA:Multivariate Software,1995.
  • 9McDonald R P,Marsh H W.Choosing a multivariate model:Non-centrality and goodness-of-fit.Psychological Bulletin,1990,107:247 -255.
  • 10Marsh H W,Hau K-T.Assessing goodness of fit:Is parsimony always desirable? The Journal of Experimental Education,64,1996:364 -390.

二级参考文献30

  • 1[1]Tucker L R, Lewis C. The reliability coefficient for maximum likelihood factor analysis. Psychometrika, 1973, 38: 1~10
  • 2[2]Steiger J H, Lind J M. Statistically-based tests for the number of common factors. Paper presented at the Psychometrika Society Meeting, IowaCity, May, 1980
  • 3[3]Bentler P M, Bonett D G. Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 1980, 88: 588~ 606
  • 4[4]Bentler P M. Comparative fit indices in structural models. Psychological Bulletin,1990, 107: 238~ 246
  • 5[5]McDonald R P, Marsh H W. Choosing a multivariate model: Noncentrality and goodness-of-fit. Psychological Bulletin, 1990,107: 247~ 255
  • 6[6]Marsh H W, Balla J R, Hau K T. An evaluation of incremental fit indices: A clarification of mathematical and empirical processes. In: Marcoulides G A, Schumacker R E eds. Advanced structural equation modeling techniques. Hillsdale, NJ: Erlbaum, 1996. 315~ 353
  • 7[7]Browne M W, Cudeck R. Alternative ways of assessing model fit. In: Bollen K A, Long J S eds. Testing Structural Equation Models. Newbury Park, CA: Sage, 1993. 136~ 162
  • 8[8]Joreskog K G, Srbom D. LISREL 8: Structural equation modeling with the SIMPLIS command language. Chicago: Scientific Software International, 1993
  • 9[9]Hu L, Bentler P M. Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 1998, 3: 424~ 453
  • 10[10]Hu L, Bentler P M. Cutoff criteria for fit indices in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 1999, 6: 1~ 55

共引文献1316

同被引文献659

引证文献34

二级引证文献232

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部