期刊文献+

压电悬臂梁发电装置的建模与仿真分析 被引量:91

Modeling and simulation of piezoelectric cantilever generators
在线阅读 下载PDF
导出
摘要 建立了单、双晶压电梁发电能力的仿真分析模型,研究了结构尺寸、激励方式及材料性能等对其发电能力的影响规律。研究表明,在基板材料及激励条件相同时,存在不同的最佳厚度比使单、双晶压电梁发电能力最大,双晶梁的最大发电量约为单晶梁的2倍。基板材料不同时,最佳厚度比随杨氏模量比增加而减小,铝、钼基板构成的单、双晶压电梁的最佳厚度比分别为(0.7,0.35)和(0.45,0.2)。在相同的厚度比及外界激励条件下,杨氏模量比对两种压电梁发电能力的影响不同,杨氏模量比低于3.3时,双晶梁的发电量均大于单晶梁。 In order to enhance the energy-generating capability of a piezoelectric cantilever generator with given dimensions, the analysis models were established to simulate the influence of the exciting method, structural parameters as well as material properties of the piezoelectric cantilevers on energy generation. The research results show that there are different Optimal Thickness Ratios (OTRs) for the Piezoelectric Monomorph Cantilever Generator (PMCG) and Piezoelectric Bimorph Cantilever Generator (PBCG) to obtain maximal electrical energy in the same dimension and excitation, and the maximal energy generated from the PBCG is about twice as much as that from the PMCG. With the increasing of the Young's Modulus Ratio (YMR), both of the OTRs of the two generators decrease. When aluminum and molybdenum plates are used for substrate, the PBCG and the PMCG achieve the OTRs of (0.7,0.35) and (0.45,0.2), respectively. With the same thickness ratio (0.5) and external excitation, YMR exerts different influences on energy generation of the two generators, and the PB CG generates more electrical energy than the PMCG when YMR is under 3.3.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2008年第1期71-75,共5页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.50477003) 吉林省科技发展计划项目(No.20050316-2No.20070331)
关键词 压电悬臂梁 发电 建模 piezoelectric cantilever electrical energy generation modeling
  • 相关文献

参考文献2

二级参考文献27

  • 1PETER W. Micropumps-summarizing the first two decades[J].SPIE, 2001, 4560: 39-52.
  • 2JEONG O C,YANG S S. Fabrication and test of a thermopneumatic micropump with a corrugated p+ diaphragm [J]. Sensors and Actuators, 2000, 83: 249-255.
  • 3FACAIS O,DUFOUR I. Dynamic simulation of an electrostatic micropump with pull-in and hysteresis phenomena [J]. Sensors and Actuators A, 1998, 70: 56-60.
  • 4BOUROUINA T,BOSSEBOEUF A,GRANDCHAMP J P. Design and simulation of an electrostatic micropump for drug-delivery applications [J]. J. Micromech. Microeng, 1997,7: 186-188.
  • 5JIANG T Y,NG T Y,LAM K Y. Dynamic analysis of an electrostatic micropump [C]. Technical Proceedings of the MSM 2000 International Conference on Modeling and Simulation of Microsystems. San Diego, CA, USA, 2000, March 27-29.
  • 6SPENCER W J,CORBETT W T,DOMINGUEZ L R, et al. An electronically controlled piezoelectric insulin pump and valves [J]. IEEE Trans. Sonics Ultrasonbics, 1978, SU-25(3):153-156.
  • 7CAO L,MANTELL S,POLLA D. Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology [J]. Sensors and Actuators A, 2001, 94:117-125.
  • 8LINNEMANN R,WOIAS P,SENFFT C D, et al. A self-priming and bubble-tolerant piezoelectric silicon micropump for liquid and gases [C]. Proc. of the 11th IEEE MEMS 1998 Technical Digest. Heidelberg, Germany, 1/25-29/98: 532-537.1998.
  • 9RICHTER M,LINNEMANN R,WOIAS P. Robust design of gas and liquid micropumps [J]. Sensors and Actuators A, 1998, 68: 480-486.
  • 10CUNNEEN J,LIN Y CH,CARAFFINI S,et al. A positive displacement micropump for microdialysis [J]. Mechatronics, 1998, (8): 561-583.

共引文献22

同被引文献743

引证文献91

二级引证文献563

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部