期刊文献+

用径向基函数神经网络方法预报太阳黑子数平滑月均值 被引量:19

Prediction of the smoothed monthly mean sunspot numbers by means of radial basis function neural networks
在线阅读 下载PDF
导出
摘要 简单介绍了径向基函数神经网络方法的原理和应用,发展了用径向基函数(RBF)对平滑月平均黑子数进行预报的方法.用不同的数据序列对网络进行训练,对未来8个月的平滑月平均黑子数进行预报.用该方法对第23周开始后的平滑月平均黑子数进行逐月预报,并与实测值进行比较,结果表明随着预报实效的延长预报误差被逐渐放大,该方法可以较准确地做出未来4个月的预报,绝对误差可以控制在20以内,标准差为4.8,相对误差控制在38%以内,大部分相对误差不超过15%(占总预报数的89%),具有较好的应用价值.用于网络训练的样本数量对预报结果会产生一定的影响. The Radial Basis Function (RBF) neural networks method is introduced and applied to the smoothed monthly mean sunspot number's (SMMSN) prediction for cycle 23 in this paper. Prediction methods are made respectively for predicting of SMMSNs for the next eight months by training the neural networks with different sets of data. A comparison of the SMMSN's predictions one to eight months in advance with the derived ones from the observational data for absolutely the most part of cycle 23 shows that this RBF neural networks method should be an applicable one for the mid-term solar activity forecast. A brief discussion give in the last section of this paper points out: (1) that the error of the prediction increases along with the time in advance, while for the prediction with an advanced time of ≤4 months the error can be controlled under 4.8 and 38%, and for 89% of this kind of prediction the relative error is ≤ 15%. (2) that size of the data set used for the training of the RBF neural networks would give an effect to the predicting ability of the prediction model.
出处 《地球物理学报》 SCIE EI CSCD 北大核心 2008年第1期31-35,共5页 Chinese Journal of Geophysics
基金 中国气象局气象新技术推广项目(CMATG2005M09,CMATG2007M03) 国家自然科学基金(50677020,10333040,10373017)资助
关键词 太阳活动 预报 预报方法 太阳黑子数 神经网络 Solar activity, Predict, Predict method, Sunspot number, Neural networks
  • 相关文献

参考文献7

二级参考文献77

  • 1王家龙.太阳质子耀斑的一个统计性质[J].空间科学学报,1993,13(4):313-315. 被引量:5
  • 2王家龙.日地系统学中的太阳活动研究(Ⅰ)日地系统物理学中缓变型太阳活动的研究[J].地球物理学进展,1994,9(3):1-11. 被引量:11
  • 3史忠先.耀斑与磁场的关系[A].见:胡文瑞等编.太阳耀斑[C].北京:科学出版社,1983.77—110.
  • 4王家龙 孙敬兰 龚建村 张训械.二阶神经网络用于太阳质子事件警报[J].中国科学,2000,30:92-95.
  • 5张桂清.短期X射线耀斑预报[J].地球物理学进展,1994,9:48-53.
  • 61,Heckman G R. Predictions of the space environment services center. In: Donnelly R F, ed. Solar-Terrestrial Predictions Proceedings. Boulder: NOAA, 1979. 322~349
  • 72,Balch C, Kunches J M. SESC methods for proton event forecasts. In: Simon P, ed. Solar-Terrestrial Predictions Proc. Boulder: NOAA, 1986. 313~356
  • 83,Heckman G R, Kunches J M, Allen J H. Prediction and evaluation of solar particle events based on precursor information. Adv Space Res, 1992, 12: 313~320
  • 94,Cane H V. The current status in our understanding of energetic particles, coronal mass ejections and flares. In: Crooker N, Joselyn J A, Feyman J, eds. Magnetic Storms. New York: American Geophys Union, 1997. 205~215
  • 105,Lundstedt H. Artificial intelligence and storm forecasting. In: Crooker N, Joselyn J A, Feyman J, eds. Magnetic Storms. New York: American Geophys Union, 1997. 13~14

共引文献41

同被引文献164

引证文献19

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部