期刊文献+

研磨-焙烧-碱处理偏高岭土制备大孔催化剂基质 被引量:4

Preparation of Macroporous Catalyst Matrix by Milling-Calcination-Alkali Treatment of Metakaolin
在线阅读 下载PDF
导出
摘要 采用研磨-焙烧-碱处理的方法,以偏高岭土为原料,制备了流化催化裂化(FCC)催化剂大孔基质。采用自动压汞仪和扫描电子显微镜对制备的大孔基质的孔结构和表面形貌进行了表征;考察了研磨时间和碱量对偏高岭土孔结构的影响。实验结果表明,经研磨-焙烧-碱处理后,偏高岭土中形成了100~2000nm的大孔,所形成的大孔与偏高岭土中原有的介孔构成了介孔-大孔双峰分布;研磨时间和碱量对偏高岭土的孔道结构有较大影响,在研磨时间为3h、加入NaOH的质量分数为20%时,偏高岭土的孔结构最好,以此条件下得到的偏高岭土为FCC催化剂基质与以高岭土为FCC催化剂基质相比,重油裂化的汽油收率从28.82%提高到36.14%。 Macroporous metakaolin matrix for fluid catalytic cracking(FCC) catalyst was prepared by milling-calcination-alkali treatment method. Metakaolin was first ballmilled with NaOH particles, then calcined, washed with water and finally dried. The pore size and pore distribution of modified metakaolin were determined by high-pressure mercury intrusion porosimetry. The morphology of modified metakaolin was characterized by SEM. Macropores with diameter of 100 -2 000 nm form in as-modified metakaolin. The newly-formed macropores together with original mesopores in raw metalkaolin give out bimodal pore distribution in modified metakaolin. Milling time and alkali content are major factors influencing pore structure of metakaolin. With different milling times and different alkali contents obvious disparity in pore distribution is observed. Cracking activity of catalysts improved sharply when milling time of 3 h and w(NaOH) of 20% were adopted in modification of Kaolin clay and was used as matrix of FCC catalysts. By micro-reactor activity evaluation with heavy oil as feed, gasoline yield increases from 28.82% to 36.14%.
出处 《石油化工》 EI CAS CSCD 北大核心 2008年第1期17-21,共5页 Petrochemical Technology
基金 国家基础研究"973"项目(2004CB217806)。
关键词 大孔材料 偏高岭土 改性 流化催化裂化 催化剂 macroporous material metakaolin modification fluid catalytic cracking catalyst
  • 相关文献

参考文献15

  • 1Sing K S W, Everett D H, Haul R A W,et al. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl Chem, 1985, 57(4) : 603 -619
  • 2Daivs M E. Ordered Porous Materials for Emerging Applications. Nature, 2002, 417(6 891) : 813 -821
  • 3杨玉旺,李凯荣,杨祖润,马群,石芳.活性氧化铝载体的扩孔研究[J].石油化工,2002,31(11):913-916. 被引量:26
  • 4Liu Hongtao, Bao Xiaojun, Wei Weisheng, et al. Synthesis and Characterization of Kaolin/NaY/MCM-41 Composites. Microporous Mesoporous Mater, 2003, 66(1): 117 - 125
  • 5陈祖庇.跨入新世纪的我国催化裂化[J].精细与专用化学品,2000,8(12):3-6. 被引量:1
  • 6Lussier R J. A Novel Clay-Based Catalystic Material Preparation and Properties. J Catal, 1991,129(1): 225 -237
  • 7Perissintto M, Lenarda M, Storaro L, et al. Solid Acid Catalysts from Clays: Acid Leached Metakaolin as lsopropanol Dehydration and 1-Butene lsomerization Catalyst. J Mol Catal A : Chem, 1997, 121(1): 103-109
  • 8Colina F G, Esplugas S, Costa J. High Temperature Reaction of Kaolin with Inorganic Acids. Br Ceram Trans, 2001, 100 ( 5 ) : 203 - 206
  • 9Belver C, Munoz M A B, Vicente M A. Chemical Activation of a Kaolinite Under Acid and Alkaline Conditions. Chem Mater, 2002, 14(5) : 2 033 -2 043
  • 10李爱英,马智,张修景,齐小周.内蒙古煤系硬质高岭土碱改性研究[J].石油化工,2006,35(6):579-582. 被引量:13

二级参考文献32

共引文献81

同被引文献56

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部