摘要
研究具色散和耗散项的四阶波动方程的初边值问题.使用乘子法,证明了问题的整体强解在关于非线性项简单而宽泛的假设下,随时间趋于无穷而衰减到零.
The initial boundary value problem of fourth order wave equation with dispersive and dissipative terms is studied. By using multiplier method, it was proven that the global strong solution of the problem decays to zero exponentially as the time approaches infinite, under a very simple and mild assumption regarding the nonlinear term.
出处
《应用数学和力学》
CSCD
北大核心
2008年第2期235-238,共4页
Applied Mathematics and Mechanics
基金
国家自然科学基金资助项目(10271034)
黑龙江省自然科学基金资助项目(A2007-02)
关键词
四阶波动方程
色散
耗散
渐近性质
fourth order wave equation
dispersive
dissipative
asymptotic behaviour