期刊文献+

基于AM-MCMC算法的贝叶斯概率洪水预报模型 被引量:39

Bayesian probabilistic flood forecasting model based on adaptive metropolis-MCMC algorithm
在线阅读 下载PDF
导出
摘要 本文在贝叶斯预报系统的框架下,利用BP网络能描述非线性映射的特性建立了基于BP网络的先验密度和似然函数的模型,并采用基于自适应采样算法(Adaptive Metropolis algorithm,简称AM)的马尔可夫链蒙特卡罗模拟方法(Markov Chain Monte Carlo,简称MCMC)求解流量的后验密度,最后给出流量的概率预报。实例表明,基于AM-MCMC的BP贝叶斯概率水文预报的精度高,且能给出预报的方差,使得防洪决策可以考虑预报的不确定性。 The models of prior density and likelihood function based on BP algorithm for ANN were built under the general frame of Bayesian forecasting system (BFS). The posterior density of discharge was obtained from Markov Chain Monte Carlo (MCMC) simulation method based on the adaptive metropolis (AM) algorithm. The probabilistic forecasting was applied to a case study. The result shows that the accuracy of forecasted discharge is higher than that of the Xinganjiang model, and the variance of prediction can be given at the same time. By using this method the uncertainty of prediction can be considered in the decision-making for flood prevention.
出处 《水利学报》 EI CSCD 北大核心 2007年第12期1500-1506,共7页 Journal of Hydraulic Engineering
基金 国家自然科学基金资助项目(50309002)
关键词 贝叶斯预报系统 自适应 MCMC 概率预报 Bayesian system adaptive metropolis algorithm MCMC probabilistic forecasting
  • 相关文献

参考文献18

  • 1王善序.贝叶斯概率水文预报简介[J].水文,2001,21(5):33-34. 被引量:35
  • 2钱名开,徐时进,王善序,王嘉涛.淮河息县站流量概率预报模型研究[J].水文,2004,24(2):23-25. 被引量:20
  • 3Krzysztofowicz R. Bayesian theory of probabilistic forecasting via deterministic hydrologic model [ J ]. Water Resources Research, 1999,25(9) :2739 - 2750.
  • 4Krzysztofowicz R, Drzal W J, Drake T R, Weyman J C, et al. Probabilistic quantitative precipitation forecasts for river basin [ J ]. Weather Forecasting, 1993,8 (4) :424 - 439.
  • 5Krzysztofowicz R. Bayesian models of forecasted time series[J].Water Resources Bulletin, 1985,21 (5):805- 814.
  • 6Krzysztofowicz R. Kelly K S. Hydrologic uncertainty processor for probabilistic river stage forecasting [ J ]. Water Resources Research, 2000, 36( 11 ) : 3265 - 3277.
  • 7Krzysztofowicz R. Bayesian system for probabilistic river stage forecasting[ J ]. Journal of Hydrology. 2002, 268 (1 -4):16 - 40.
  • 8Krzysztofowicz R, Herr H D. Hydrologic uncertainty processor for probabilistic fiver forecasting: precipitation dependent model[J] . Journal of Hydrology, 2001, 249( 1 - 4) : 46 - 48.
  • 9Krzysztofowicz R, Maranzano C J. Hydrologci uncertainty processor for probabilistic stage transition forecasting[J]. Journal of Hydrology, 2004, 293(1- 4): 57- 73.
  • 10张洪刚.贝叶斯概率水文预报系统及其应用研究[D].武汉:武汉大学,2006.

二级参考文献11

  • 1梁忠民,戴昌军.水文频率分析中的多项式正态变换方法研究[J].河海大学学报(自然科学版),2004,32(4):363-366. 被引量:17
  • 2RomanKrzysztofowicz.概率水文气象预报(中译文)[J].水文科技信息,1997,.
  • 3Krzysztofowicz R.Bayesian theory of probabilistic forecasting via deterministic hydrologic model[J].Water Resources Research,1999,35(9):2739-2750.
  • 4Krzysztofowicz R,Kelly K S.Hydrologic Uncertainty Processor for Probabilistic River Stage Forecasting[J].Water Resources Research,2000,36(11):3265-3277.
  • 5Krzysztofowicz R,Herr H D.Hydrologic uncertainty processor for probabilistic river stage forecasting:precipitation-dependent model[J].Journal of Hydrology,2001,249(1-4):46-48.
  • 6Krzysztofowicz R.Bayesian system for probabilistic river stage forecasting[J].Journal of Hydrology,2002,268(1-4):16-40.
  • 7Krzysztofowicz R,Maranzano C J.Hydrologic uncertainty processor for probabilistic stage transition forecasting[J].Journal of Hydrology,2004,293(1-4):57-73.
  • 8Marshall L,Nott D,Sharma A.A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling[J].Water Resources Research,2004,40(2).
  • 9王善序.贝叶斯概率水文预报简介[J].水文,2001,21(5):33-34. 被引量:35
  • 10岳博,焦李成.Bayes网络学习的MCMC方法[J].控制理论与应用,2003,20(4):582-584. 被引量:4

共引文献86

同被引文献359

引证文献39

二级引证文献343

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部