期刊文献+

一种基于语义及统计分析的DeepWeb实体识别机制 被引量:18

A Deep Web Entity Identification Mechanism Based on Semantics and Statistical Analysis
在线阅读 下载PDF
导出
摘要 分析了常见的实体识别方法,提出了一种基于语义及统计分析的实体识别机制(deep Web entity identification mechanism based on semantics and statistical analysis,简称SS-EIM),能够有效解决Deep Web数据集成中数据纠错、消重及整合等问题.SS-EIM主要由文本匹配模型、语义分析模型和分组统计模型组成,采用文本粗略匹配、表象关联关系获取以及分组统计分析的三段式逐步求精策略,基于文本特征、语义信息及约束规则来不断精化识别结果;根据可获取的有限的实例信息,采用静态分析、动态协调相结合的自适应知识维护策略,构建和完善表象关联知识库,以适应Web数据的动态性并保证表象关联知识的完备性.通过实验验证了SS-EIM中所采用的关键技术的可行性和有效性. According to analyzing the traditional entity identification methods, a deep Web entity identification mechanism based on semantics and statistical analysis (SS-EIM) is presented in this paper, which includes text matching model, semantics analysis model and group statistics model. Also a three-phase gradual refining strategy is adopted, which includes text initial matching, representation relationship abstraction and group statistics analysis. Based on the text characteristics, semantic information and constraints, the identification result is revised continuously to improve the accuracy. By performing the self-adaptive knowledge maintenance strategy, the content of representation relationship knowledge database can be more complete and effective. The experiments demonstrate the feasibility and effectiveness of the key techniques of SS-EIM.
出处 《软件学报》 EI CSCD 北大核心 2008年第2期194-208,共15页 Journal of Software
基金 Supported by the National Natural Science Foundation of China under Grant No.60673139 (国家自然科学基金)
关键词 DEEP WEB 数据集成 实体识别 数据消重 表象整合 deep Web data integration entity identification data deduplication representation consolidation
  • 相关文献

参考文献4

二级参考文献47

  • 1[1]Kevin Chen-Chuan Chang,Bin He,Chengkai Li,et al.Structured databases on the Web:Observations and implications.SIGMOD Record,2004,33(3):61-70
  • 2[2]W Frakes,R Baeza-Yates.Information Retrieval:Data Structures and Algorithms.Englewood Cliffs,NJ:Prentice Hall,1992
  • 3[3]W William.Cohen:Integration of heterogeneous databases without common domains using queries based on textual similarity.SIGMOD Conf,Seattle,Washington,1998
  • 4[4]Sunita Sarawagi.Anuradha bhamidipaty.Interactive deduplication using active learning.KDD,Edmonton,Alberta,Canada,2002
  • 5[5]E Winkler.The state of record linkage and current research problems.http://www.census.gov/srd/www/hyyear.html,1999
  • 6[6]Sheila Tejada,Craig A Knoblock,Steven Minton.Learning domain-independent string transformation weights for high accuracy object identification.KDD,Acapulco,Mexico,2002
  • 7[7]A Doan A,Y Lu,Y Lee,et al.Object matching for information integration:A profiler-based approach.IIWeb,2003
  • 8Monge A E, Elkan C P. An Efficient Domain-independent Algorithm for Detecting Approximately Duplicate Database Records [A]. Proc of DMKD'97[C]. Tucson Arizona, 1997:23-29.
  • 9Hernandez M A, Stolfo S G. The Merge/Purge Problem for Large Databases[A]. Proc ACMS IGMOD Int Conf on Management of Data [C]. California,1995:127-138.
  • 10Lee M L, Lu H J, Ling T W, et al. Cleansing Data for Mining and Warehousing [A]. 10th Int Conf on Database and Expert ,Systems Applications [C].Florence, 1999:751-760.

共引文献325

同被引文献132

引证文献18

二级引证文献190

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部