期刊文献+

微阵列实验中差异表达基因常用统计分析方法 被引量:2

COMMON STATISTICAL TESTS FOR DIFFERENTIAL EXPRESSED GENE IN MICROARRAY EXPERIMENTS
在线阅读 下载PDF
导出
摘要 生命科学已进入以功能基因组研究为主的后基因组时代,基因微阵列技术是功能基因组学研究领域最常用的手段,可同时获得大量基因的表达谱数据资料。发现差异表达基因是微阵列实验研究的主要目的之一,本文针对微阵列实验中差异表达基因常用统计分析方法进行综述。多序列两样本比较时,t检验法是最简单的检验差异表达基因的统计分析方法。多序列多组比较时,统计推断可采用方差分析,其中混合效应方差分析(方差分量模型)是含有多个误差来源的多因素微阵列实验有效统计分析方法。其他线性和非线性混合效应模型用于基因表达微阵列数据的统计学分析有待进一步研究。 Life sciences have entered a functional genomics research-based post-genomic era. Microarray technology is the most commonly used method in the functional genomics researches and produces a large number of gene expression profile data. To discover differentially expressed genes is one of the main purposes of mlcroarray experimental studies. This paper reviewed the common statistical tests for differential expressed gene in microarray experiments. The simplest statistical method for detecting differential expression is the t test, which can be used to compare two conditions when there is replication of samples. With more than two conditions, analysis of variance (ANOVA) can be used. and the mixed ANOVA model (variance component model) is a general and powerful approach for microarray experiments with multiple factors and several sources of variation. Other linear and nonlinear mixed effects models for gene expression microarray data analysis need further study.
出处 《现代预防医学》 CAS 北大核心 2008年第4期637-639,645,共4页 Modern Preventive Medicine
基金 国家自然科学基金资助项目(39900126) 陕西省自然科学基金资助项目(2003F11)
关键词 微阵列 差异表达基因 统计分析 Microarray, Differential expressed gene Statistical analysis
  • 相关文献

参考文献13

  • 1Demeter J, Beauheim C, Gollub J, et al. The Stanford Microarray Database : implementation of new analysis tools and open source release of software [J]. Nucleic Acids Res, 2007, 35 (Database issue) : 766-770.
  • 2Cui X, Churchill GA. Statistical tests for differential expression in cDNA microarray experiments [J]. Genome Biol, 2003, 4 (4) : 210-220.
  • 3The Jockson Laboratory[DB/OL]. http: //www.jax.org/staff/churchill /labsite/research/expression/Cui-Transform.pdf.
  • 4周海廷.DNA微阵列资料分析中的统计学方法[J].中国卫生统计,2003,20(6):370-373. 被引量:1
  • 5吴骋,贺佳,贺宪民,付旭平.cDNA微阵列实验分析中常用的统计方法[J].国外医学(生物医学工程分册),2004,27(5):305-309. 被引量:3
  • 6Callow M J, Dudoit S, Gong EL, Speed TP, Rubin EM: Microarray expression profiling identifies genes with altered expression in HDL-deficient mice [J]. Genome Res 2000, 10: 2022-2029.
  • 7R package: statistics for microarray Analysis [DB/OL]. http: // www.stat.berkeley.edu/users/terry/zarray/Software/smacode.html.
  • 8SAM: Significance Analysis of Microarrays [DB/OL]. http: //www-stat.stanford.edu/%7Etibs/SAM.
  • 9IGB [DB/OL]. http: //www.igb.uci.edu/servers/cybert/.
  • 10荀鹏程,赵杨,易洪刚,等.Permutation Test在假设检验中的应用[D].中国卫生统计学术交流大会论文集.2005,348-353.

二级参考文献31

  • 1[1]Kerr MK,Churchill GA.Experimental design for gene expression microarrays. Biostatistics,2001,2:183-201.
  • 2[2]Pan W,Lin J,Le C.How many replicates of arrays are required to detect gene expression changes in microarray experiments? A mixture model approach.Genome Biology,2002,3(5):1-22.
  • 3[3]Dudoit S.et al.Statistical methods for identifying differentially expressed genes in replicated Cdna microarray experiments.Statistica Sinica ,2002,12:111-140.
  • 4[4]Schadt E E et al.Feature extraction and normalization algorithms for high-density oligonucleotide gene expression array data. Journal of CellularBiochemistry,2002,84,S37:120-125.
  • 5[5]Lonnstedt I,Speed T P.Replicated microarray data.Statistica Sinica,2002,12:31-46.
  • 6[6]Tusher V et al.Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences,2001,98:5116-5121.
  • 7[7]Efron B et al.Empirical Bayes analysis of a microarray experiment. Journal of the American Statistical Association,2001,96:1151-1160.
  • 8[8]Golub T R et al.Molecular classification of cancer:class discovery and class prediction by gene expression monitoring.Science,1999,286:531-537.
  • 9[9]Brown M P et al.Knowledge-based analysis of microarray gene expression data by using support vector machines. Proceedings of the National Academy of Sciences,2000,97:262-267.
  • 10[10]Quackenbush J Computational analysis of microarray data. Nature Review Genetics,2001,2:418-427.

共引文献14

同被引文献27

  • 1田晓明,傅珏生.多元总体均值差异显著性检验的研究[J].心理科学,2005,28(1):164-165. 被引量:4
  • 2党耀国,刘思峰,刘斌,翟振杰.聚类系数无显著性差异下的灰色综合聚类方法研究[J].中国管理科学,2005,13(4):69-73. 被引量:34
  • 3卢纹岱.Spss统计分析[M].3版.北京:电子工业出版社,2003.
  • 4Mocellin S, Rossi CR. Principles of gene microarray data analysis[J]. Adv Exp Med Biol,2007,593:19 -30.
  • 5Esplin MS, Tausett MB, Trasor A, et al. Paternal and maternalcomponents of the predisposition to preeclampsia[J]. NewEngJ Med, 2001,344:867.
  • 6Meltzer PS. Spotting the target : Microarray for disease gene diseovery[J]. Current Opin Genetics & Development, 2001,11 : 258.
  • 7Takemasa I , Higuchi H , Yamamoto H , et al. Construction of preferential cDNA Mieroarray specialized for human colorectal carcinoma : molecular sketch of colorectal cancer [J]. Biochem Biophys Res Commun , 2001,285:1244.
  • 8Jeong YH, Ishikawa K, Someya Y, et al. Molecular characterization and expression of the low-density lipoprotein receptor-related protein-10, a new member of the LDLR gene family[J]. Biochem Biophys Res Commun,2010;391(1) :1110-5.
  • 9Reimer T, Koczan D, Gerber B. Microarray analysis of differentially expressed genes in placental tisse of preeclampsia:Up-regulation of obesity, related genes [J]. Mol Hum Reprod ,2002,8:674-680.
  • 10Kermxhi N,Suzuki T,Uechi T,et al. The human mitochondrial ribosomal protein genes:mapping of 54 genes to the chromsomes and implications for human dlsorders[J].Genomica , 2001,77 (1-2): 65-70.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部