期刊文献+

基于粗糙集特征优化通信控制终端分类方法

The Classification Method of Characteristic Optimization Communication Controlling Terminal Based on Rough Sets
在线阅读 下载PDF
导出
摘要 目的根据无线通信建筑环境干扰的特征变化,寻找确定通信控制终端发射功率分类的方法.方法采用粗糙集软计算特征约简方法对通信控制终端的原始特征进行优化,去除冗余特征,并采用BP网络对测试样本中随机选取的样本进行测试.结果通过对该方法仿真,证明了该方法具有良好的识别精度.结论根据通信控制终端的特征,提出基于粗糙集软计算的特征约简方法,该方法能够提高神经网络识别分类的可靠性和快速性. The paper aims to determine the classification method of characteristic optimization communication controlling terminal, based on the change of the characteristics of wireless internet building environment disturbance. We optimized the primitive characteristic of communication controlling terminal through rough sets software computation characteristic reduction method, eliminated redundant characteristic and used the BP network to test the stochastic samples. The result shows that this method is better than the traditional one in recognizing precision through simulation, The reduction method proposed here can enhance reliability and the rapidity of the neural network recognition classification.
出处 《沈阳建筑大学学报(自然科学版)》 CAS 2008年第1期157-160,共4页 Journal of Shenyang Jianzhu University:Natural Science
基金 辽宁省教育厅科学技术研究项目(20060700)
关键词 粗糙集 BP神经网络 发射功率 特征提取 分类器 rough sets BP neural network launch power feature optimization classifier
  • 相关文献

参考文献10

  • 1Rice P .L, Radio transmission into buildings at 35 and 150 mc[J]. BellSystTech, 1959, 38(1) : 197 - 210.
  • 2Keenan J M, Motley A J, Radio coverage in buildings [J]. British Telecom Technology, 1990, 8 (1): 19 - 24.
  • 3Iskander M F, Yun Zhengqing. Propagation predic tion models for wireless communication systems[J] IEEE Transactions on Microwave Theory and Tech niques, 2002, 50(3) :662 - 673.
  • 4Turkmani A M D. Modeling of radio transmissions into and within multistory buildings at 900, 1800 and 2300 MHz [ J ]. IEEE Proceedings - Ⅰ, 1993 (140) : 462 - 470.
  • 5Pawlak Z. Rough set [ J ]. Communication of the ACM, 1995, 38(1) :89 - 95.
  • 6Pawlak Z. Rough set [ J ]. Int. J of Computer and Information Science, 1982, (11) :341 - 356.
  • 7李铁鹰,崔艳.一种基于粗糙集理论的神经网络分类器的设计[J].计算机工程与应用,2005,41(32):167-168. 被引量:4
  • 8赵明 王秀峰 刘明吉.基于粗糙集理论的特征提取新算法[J].计算机科学,2001,28(5):125-127.
  • 9胡方明,简琴,张秀君.基于BP神经网络的车型分类器[J].西安电子科技大学学报,2005,32(3):439-442. 被引量:22
  • 10吴成东,周博,李孟歆,刘承宪.基于粗糙集的神经网络缺陷分类方法的研究[J].沈阳建筑大学学报(自然科学版),2007,23(3):525-528. 被引量:4

二级参考文献20

  • 1李铁鹰,崔艳.一种基于粗糙集理论的神经网络分类器的设计[J].计算机工程与应用,2005,41(32):167-168. 被引量:4
  • 2黄敬雄,谢维信,黄建军,李天泉.基于模糊神经网络的目标识别[J].西安电子科技大学学报,1997,24(1):72-77. 被引量:5
  • 3Brandon J R, Howarth M S, Searcy S W. A Neural Networks of Carrot Tip Classification[J]. ASAE Paper, 1990, 90(7): 549.
  • 4Abou-Nasr M A, Sid-Ahmed M A. Fast Learning and Efficient Memory Utilizition with a Prototype Based Neuron-Classifier[J]. Pattern Recognition, 1995, 79(28): 581-593.
  • 5Pawlak Z.Rough Set Theory and It Applications to Data Analysis[J]. Cybernetics and system, 1998 ;29 : 661-688.
  • 6Keming Xie,Zehua Chen.Applieation of Rough Sets in Intelligent Control[C].In:Proe of 4 th ISTM.Shanghai,China,2001:291-294.
  • 7李孟歆 吴成东 夏兴华.基于粗糙集神经网络的自动视觉检测系统及其应用.计算机科学,2003,30(5):201-202.
  • 8Nirupam,Rajagopalan S,Karimi I.Agent-based supply chain management Fra-mework[J ].Computers and Chemical Engineering,2002 (26):1755 -1769.
  • 9Nirupam J,Rajagopalan S,Karimi,I.Agent-based supply chain management-a refinery application[J].Computers and Chemical Engineering,2002 (26):1771-1781.
  • 10李孟歆.基于粗糙集神经网络模式识别系统研究[D].沈阳:沈阳建筑大学信息与控制工程学院,2001.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部