期刊文献+

FB-NBAS:一种基于流的网络行为分析模型 被引量:5

FB-NBAS: A Flow-based Network Behavior Analysis Model
在线阅读 下载PDF
导出
摘要 传统的入侵检测系统通常需要对攻击预先了解,在流量分析和异常检测方面存在不足。该文提出一种新的基于流的统计分析模型,通过构建网络的行为特征库,实时监测和发现网络异常,基于该分析技术设计和实现了一个网络监控系统原型。该原型可以监测和发现网络中可疑代码,并进行实时跟踪。 Traditional Intrusion Detection Systems(IDSs) requires prior knowledge of attacks, loses effectiveness in flow analysis and abnormity detection. This paper proposes a new flow-based network behavior analysis model, which monitors and detects abnormity of network by building up a network behavior features base for each host. Based on this technology, a network monitor prototype system is designed and implemented. The system can detect malicious codes and track them in real time.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第3期165-167,共3页 Computer Engineering
关键词 网络监控 网络行为 行为分析 network monitor network behavior behavior analysis
  • 相关文献

参考文献5

  • 1Juan M E, Pedro G, Jesus E D. Anomaly Detection Methods in Wired Networks: A Survey and Taxonomy[J]. Computer Communications. 2004, 27(16): 1569-1584.
  • 2郑军,胡铭曾,云晓春,郑仲.基于数据流方法的大规模网络异常发现[J].通信学报,2006,27(2):1-8. 被引量:17
  • 3Networks M. Paper W. Network Behavior Analysis(NBA) Systems: Ensuring Application Availability Through Enterprise-wide Visibility[EB/OL]. (2006-09-10). http://www.lancope.com/resource/.
  • 4Behrauz A. Sophia E TCP/IP Protocol Suite[M]. 2nd ed. [S. l.]: McGrow-hill, 2003.
  • 5Tanenbaum A S. Computer Networks[M]. 4th ed. 北京:清华大学出版社,2004.

二级参考文献11

  • 1JUAN M E,PEDRO G,JESUS E D.Anomaly detection methods in wired networks:a survey and taxonomy[J].Computer Communications,2004,27(16):1569-1584.
  • 2YE N,SEAN V,CHEN Q.Computer intrusion detection through EWMA for autocorrelated and uncorrelated data[J].IEEE Transactions on Reliability,2003,52(1):75-82.
  • 3WANG H,ZHANG D,KANG S.Detecting SYN flooding attacks[A].Proceedings of the IEEE Infocom[C].New York,2002.123-132.
  • 4JIN C,WILLIAM S C,DONG L.The effect of statistical multiplexing on the long-range dependence of Internet packet traffic[EB/OL].http://cm.bell-labs.com/stat/doc/multiplex.pdf,2001.
  • 5HUANG P,FELDMANN A,WILLINGER W.A non-intrusive,wavelet-based approach to detecting network performance problems[A].Proceedings of ACM SIGCOMM Internet Measurement Workshop 2001[C].San Francisco Bay Area,2001.
  • 6BARFORD P,KLINE J,PLONKA D.A signal analysis of network traffic anomalies[A].Proceedings of ACM SIGCOMM Intemet Measurement Workshop[C].Marseilles,France,2002.71-82.
  • 7ALARCON V,BARRIA J A.Anomaly detection in communication networks using wavelets[J].IEE Proceedings Communications,2001,148(6):62-355.
  • 8BABCOCK B,BABU S,DATAR M,MOTWANI R,WIDOM J.Models and issues in data streams[A].Proceedings of the 21st ACM SIGACT-SIGMOD-SIGART on Principles of Database Systems[C].Madison:ACM Press,2002.1-16.
  • 9MANKU G S,MOTWANI R.Approximate frequency counts over data streams[A].Proceedings of the 28th International Conference on Very Large Data Bases[C].Hong Kong,China,2002.346-357.
  • 10SCHWELLER R,GUPTA A,PARSONS E.Reversible sketches for efficient and accurate change detection over network data streams[A].Proceedings of the ACM SIGCOMM Internet Measurement Conference (IMC '04)[C].Sicily,Italy,2004.207-212.

共引文献16

同被引文献50

引证文献5

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部