期刊文献+

基于改进的双快速行进法的图像分割方法 被引量:10

Image Segmentation Based on Improved Dual Fast Marching Method
在线阅读 下载PDF
导出
摘要 由于回转窑烧结图像境界模糊、噪声严重,传统方法难以有效地分割出烧结图像中的物料区、火焰区、充分燃烧区和黑把子区等关心区域(ROIs)。提出了利用敏感区域改进双快速行进法与利用能量衰减方程除去区域间耦合的图象分割新方法。首先,在快速行进法中引入了敏感区域的概念,定义了新的终止条件,利用改进后的双快速行进法与图像融合方法进行物料区和黑把子区的粗分割;然后,提出了采用能量衰减方程除去烧结物料对火焰区的影响,利用大津方法对火焰区进行粗分割,并通过粗分割的火焰区与黑把子区的差分来进行火焰区的精分割。对回转窑烧结图像的分割试验表明,利用本方法能够有效地从回转窑烧结图像精确地分割出ROIs。 It's difficult for traditional methods to segment some Regions of Interesting (ROIs) of material, blackbar, flame and sufficient burning from sintering images owing to their characteristics of week boundary and strong noise. A new image segment method was proposed based on improved dual fast marching method by sensitive region and energy descendent equation to decrease the coupling of regions. Firstly, in the fast marching method, the concept of sensitive region was introduced and a new end condition was defined, and the regions of material and blackbar were segmented by the improved dual fast marching method along with the image combination methods. Secondly, the energy descendent equation was applied to reduce the influence of material region on flame region. The flame region was roughly segmented by ostu method and then was accurately segmented by combining the roughly segmented flame region with blackbar region. The segment experiments show that the new developed methods are valid and accurate to segment the ROIs from the sintering images in rotary kiln.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第3期803-806,810,共5页 Journal of System Simulation
基金 国家自然科学基金(60534010) 国家重点基础研究计划(973计划,2002CB312201)
关键词 水平集方法 双快速行进法 敏感区域 能量衰减方程 图像分割 回转窑 level set method dual fast marching method sensitive region energy descendent equation image segmentation rotary kiln
  • 相关文献

参考文献13

  • 1Roberts L G. Machine perception of three-dimensional solid [C]. Optical and Electro-Optical Information Processing. Cambridge, MA, USA: MIT Press, 1965: 159-197.
  • 2Roberts L G. Machine perception of three-dimensional solid [C].Optical and Electro-Optical Information Processing ippett J, et al. eds 1965: 159-197.
  • 3李树涛,王耀南,毛建旭.基于多神经网络分类器组合的火焰图像分割[J].数据采集与处理,2000,15(4):443-446. 被引量:3
  • 4Malladi R, Sethian J A. Shape Modeling with Front Propagating: A Level Set Approach [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence (S0162-8828), 1995, 17(2): 158-175.
  • 5Cohen L D. On active contour models and balloons [J]. CVGIP: Image Understanding (S1049-9660), 1991, 53(2): 211-218.
  • 6Osher S, Sethian J A. Fronts Propagating with Curvature Dependent Speed: Algorithms Based on the Hamilton-Jacobi Formulation [J]. Journal of Computational Physics (S0021-9991), 1988, 79( 1): 12-49.
  • 7Sethian J A. A fast marching level set method for monotonically advancing fronts [J]. Proceedings of the National Academy of Sciences (S0027-8424), 1996, 93(4): 1591-1595.
  • 8Krystek M. A fast Gauss filtering algorithm for roughness measurements [J]. Precision Engineering (S0141-6359), 1996, 19(2): 198-200.
  • 9Kass M, Witkin A, Terzopoulos D. Snake:Active contour models [C].Proceedings of the 1st International Conference on Computer Vision. London: IEEE, 1987: 259-268.
  • 10金立左,夏良正,杨世周.图象分割的自适应模糊阈值法[J].中国图象图形学报(A辑),2000,5(5):390-395. 被引量:30

二级参考文献13

共引文献80

同被引文献112

引证文献10

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部