期刊文献+

多集散点车辆路径问题及其蚁群算法研究 被引量:7

Study on multi-depots vehicle routing problem and its ant colony optimization
原文传递
导出
摘要 为使多集散点车辆路径问题结果全局最优,以订单为基准建立货运车辆路径问题模型.以订单为基准建立蚁群算法的二维禁忌数组,确定相邻两个集散点相同时的蚂蚁状态转移规则,使蚁群在满足车辆约束条件下,按禁忌表对所有订单搜索.此模型和算法实现了所有车辆对所有订单进行路径搜索,易于全局最优.实例求解结果表明模型及算法的有效性. In order to get the global solution in multi-depots vehicle routing problem (VRP), VRP model based on detail order information was established. A two dimension tabu table based on orders was established for ant colony optimization algorithm, and state transfer rules were established when the two adjacent nodes were same. Then all the vehicle routs were searched by ants that satisfied the vehicle constrain according to ants tabu table. It is easy to get the global solution for model and algorithm implement the routs search of all vehicles to all orders. The illustration result shows that model and algorithm are effective for multi-depots vehicle routing problem.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2008年第2期143-147,共5页 Systems Engineering-Theory & Practice
基金 交通部科技项目(200439800060)
关键词 多集散点 车辆路径问题 蚁群算法 禁忌表 multi-depots vehicle routing problem ant colony optimization tabu table
  • 相关文献

参考文献10

  • 1Ramser D. The truck dispatching probtem[J]. Mgt Sci, 1959, 6:81 - 89.
  • 2Kang K H, Lee Y H, Lee B K. An exact algorithm for multi depot and multi period vehicle scheduling problem[J]. Springer Berlin / Heidelberg, 2005, 3483 : 350 - 359.
  • 3Polacek M, Hartl R F, Doerner K, et al. A variable neighborhood search for the multi depot vehicle routing problem with time windows[J]. Springer Netherlands, Journal of Heuristics, 2004, 10(6) :613 - 627.
  • 4Lim A, Fan Wang. Multi-depot vehicle routing problem: A one-stage approach[J]. Automation Science and Engineering, IEEE Transactions on [ see also Robotics and Automation, IEEE Transactions on], 2005,2(4):397- 402.
  • 5Liu S C, Lee S B. A two-phase heuristic method for the multi-depot location muting problem taking inventory control decisions into consideration[J]. Springer London, The International Journal of Advanced Manufacturing Technology, 2003,22( 11 - 12) : 941 - 950.
  • 6钟石泉,贺国光.多车场有时间窗的多车型车辆调度及其禁忌算法研究[J].运筹学学报,2005,9(4):67-73. 被引量:31
  • 7陈宁,刘会林,傅维新.多企业协同运输研究[J].武汉理工大学学报(交通科学与工程版),2005,29(3):440-443. 被引量:13
  • 8杨元峰,崔志明,陈建明.有时间窗约束的多车场车辆路径问题的改进遗传算法[J].苏州大学学报(工科版),2006,26(2):20-23. 被引量:6
  • 9Hirota K, Kewei Chen, Fangyan Dong. Computational intelligence approach to real-world cooperative vehicle dispatching problem [C]//Proceedings of 2004 2nd International IEEE Conference on Intelligent Systems, Varna, Bulgaria: IEEE, 2004. 7- 12.
  • 10Dorigo M, Maniezzo V, Colomi A. Ant system: Optimization by a colony of cooperating agents[J]. Systems, Man and Cybernetics, Part B, IEEE Transactions on, 1996, 26(1) :29 - 41.

二级参考文献15

  • 1邹彤,李宁,孙德宝,李菁.多车场车辆路径问题的遗传算法[J].计算机工程与应用,2004,40(21):82-83. 被引量:33
  • 2谢华,都金康.基于优化理论和GIS空间分析技术的公交站点规划方法[J].武汉理工大学学报(交通科学与工程版),2004,28(6):907-910. 被引量:20
  • 3刘志强.物流配送系统设计[M].北京:中国物资出版社,2001.236.
  • 4G. Laporte, Y. Nohert and D. Arpin. Optimal Solutions to capacitated vehicle routing problems[J]. Congressus Numerantium 1984, 44: 283~292.
  • 5G. Laporte, Y. Nohert and S. Taillefer, Solving a family of multi-depot vehicle routing and location-routing problems[J]. Transp. Sci. 1988, 22: 161~172.
  • 6F. A. Tillman. The multiple terminal delivery problem with probabilistic demands[J]. Transp.Sci. 1969, (3): 192~204.
  • 7A. Wren and A. Holliday. Computer scheduling of vehicles from one or more depots to a number of delivery points[J]. Opns Res. Q. 1972, 23: 333~344.
  • 8B. L. Golden, T. L. Magnanti and H. Q. Nguyen. Implementing vehicle routing algorithms[J].Networks, 1973, (7): 113~148.
  • 9I. M. Chao, B. L. Golden and E. Wasil. A new heuristic for the multi-depot vehicle routing problem that improves upon best-known solutions[J]. Am, J, Math, Mgmt. Sci. 1983, 13:371~406.
  • 10O. M. Raft. A modular algorithm for an extended vehicle scheduling problem[J]. Eur. J. Opl Res. 1982, (11): 67~76.

共引文献44

同被引文献110

引证文献7

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部