期刊文献+

基于Riccati方程的自校正解耦融合Kalman滤波器 被引量:2

Self-tuning decoupled fusion Kalman filter based on Riccati equation
在线阅读 下载PDF
导出
摘要 对于带未知噪声方差的多传感器系统,用相关方法给出了噪声方差的在线估值器,进而基于Riccati方程和按分量标量加权最优融合规则,提出了自校正分量解耦信息融合Kalman滤波器.用动态误差系统分析方法证明了自校正融合Kalman滤波器按实现收敛于最优融合Kalman滤波器,因而具有渐近最优性.一个3传感器跟踪系统的仿真例子说明了其有效性. For the multisensor systems with unknown noise variances, an on-line noise variance estimator is presented by using the correlation method. Based on the Riccati equation and optimal fusion rule weighted by scalars for state components, a self-tuning component decoupled information fusion Kalman filter is presented. It is proved that the self-tuning fusion Kalman filter converges to the optimal fusion Kalman filter in a realization, so that it has the asymptotic optimality. A simulation example for a tracking system with 3-sensor shows its effectiveness.
出处 《控制与决策》 EI CSCD 北大核心 2008年第2期195-199,203,共6页 Control and Decision
基金 国家自然科学基金项目(60374026)
关键词 多传感器信息融合 解耦融合 自校正融合器 KALMAN滤波器 按一个实现收敛性 Multisensor information fusion Decoupled fusion Self-tuning fuser Kalman filter Convergence in a realization
  • 相关文献

参考文献7

  • 1Han Q, Harris C J. Comparison of two measurement fusion methods for Kalman-filter-bases multisensor data fusion[J]. IEEE Trans on Aerospace and Electronic Systems, 2001,37(1) :273-279.
  • 2LEE T T. A direct approach to identify the noise covariances of Kalman filtering[J]. IEEE Trans on Automatic Control, 1980, 25(4): 841-842.
  • 3Jing L. System identification: Theory for the user[M]. 2nd Ed. Prentice-Hall PTR, 1999.
  • 4Deng Z L, Gao Y, Mao L, et al. New approach to information fusion steady-state Kalman filtering [J]. Automatica, 2005, 41(10):1695-1707.
  • 5邓自立 李春波.自校正对角阵加权信息融合Kalman预报器及其收敛性分析.自动化学报,2007,33(2):156-163.
  • 6Deng Z L, Li C B. Self-tuning information Kalman predictor weighted by scalars [C]. Proc of the 6th Congress on Intelligent Control and Automation. 大连, 2006, 2: 1487-1491.
  • 7陈传璋,金福临,胡家赣.数学分析[M].上海:上海科学技术出版社,1962.

共引文献4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部