期刊文献+

基于协作过滤的个性化服务技术研究 被引量:15

Personalized service based on collaborative filtering
在线阅读 下载PDF
导出
摘要 随着网络的普及和发展以及网络信息量的日益增加,为广大用户提供个性化服务显得尤为必要。在对个性化服务技术相关知识进行概述的基础上介绍了协作过滤信息推荐技术的基本原理、分类、所面临的困难等,并对国内外研究现状等进行了综述。最后对基于协作过滤的个性化服务技术进一步的研究工作进行了展望。 As the development of the internet and the information is on the increase, it is absolutely necessary to support us the personalized service. Firstly, the basic principle, classifying and the facing difficulties of collaborative filtering are introduced. Subsequently, a survey of the current developing status is made about it. At last, some research directions for personalization service based on collaborative filtering are presented.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第4期983-986,共4页 Computer Engineering and Design
基金 国家自然科学基金项目(60373111) 新世纪优秀人才支持计划基金项目(NCET) 重庆市自然科学基金项目(2005BA2003) 重庆邮电大学自然科学基金项目(A2007-29)。
关键词 个性化服务 协作过滤 信息推荐 personalized service collaborative filtering information recommendation
  • 相关文献

参考文献10

二级参考文献108

  • 1Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 2Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 3Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 4Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 7Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 8Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.
  • 9Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997.
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: ACM Conference on Electronic Commerce. 2000. 158~167.

共引文献1106

同被引文献123

引证文献15

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部