期刊文献+

基于自适应神经模糊推理系统的噪声消除方法 被引量:2

A Noise Cancellation Method Based on Adaptive Neuro-Fuzzy Inference System
在线阅读 下载PDF
导出
摘要 针对信号处理领域噪声消除的实际问题,提出了一种基于模糊推理的自适应神经网络控制方法。通过自适应神经模糊推理系统(ANFIS)对非线性系统的结构和参数进行辨识与自学习,采用混合学习算法,对前向参数和结论参数分别辨识,在提高精度的同时可加快训练收敛的速度,使控制系统具有良好动静态性和鲁棒性,实现了消除通信系统中噪声的目标,最后对基于ANFIS的噪声消除系统进行了建模和仿真,并与自适应神经网络滤波方法的结果对比,其结果证明了该方法的有效性。 An adaptive neuro - fuzzy control method of noise cancellation is proposed in this paper for solving the practical problems in signal processing. The structures and parameters of nonlinear system are identified and learned by ANFIS. This network uses hybrid learning algorithm to identify former parameters and conclusion parameters. The algorithm improves the precision as well as quickens the training speed, so the control systems have good activation character and robustness. The method realizes the objective of canceling noise in the communication systems. Finally, the ANFIS model is built and simulated, then compared with the result of adaptive neural network filtering, and the effectiveness of the proposed method is demonstrated by the obtained result.
出处 《计算机仿真》 CSCD 2008年第2期186-189,共4页 Computer Simulation
基金 国家自然科学基金项目(60474029) 湖南省自然科学基金资助项目(03JJY3107) 湖南省教育厅科研资助项目(05C188)
关键词 信号处理 噪声消除 自适应神经模糊推理系统 仿真 Signal processing Noise cancellation Adaptive neuro - fuzzy inference system(ANFIS) Simulation
  • 相关文献

参考文献10

二级参考文献44

  • 1胡梦佑,陈钧量.变窗长自适应算法[J].电子学报,1994,22(4):102-107. 被引量:1
  • 2蔡念,胡匡祜,李防震,苏万芳.基于小波神经网络的图像去噪算法[J].生物物理学报,2005,21(1):78-82. 被引量:8
  • 3冯夏庭,王泳嘉,姚建国.煤矿顶板矿压显现实时预报的自适应神经网络方法[J].煤炭学报,1995,20(5):455-460. 被引量:20
  • 4MartinT Hagan HowardB Demuth MarkH Beale.神经网络设计[M].北京:机械工业出版社,2002..
  • 5B Widrow,J R Glover.Adaptive noise cancelling:Principles and applications[J].IEEE Proceedings, 1975 ; (63) : 1692-1716.
  • 6M J Bradley,P Mars.Application of recurrent neural network to communication channel equlization[J].IEEE Trans on Neural Network, 1994; 15 (2).
  • 7Cichocki A,Vorobyov S A,Rutkowski T.Nonlinear interference cancellation using neural network[C].In:Proceeding of 1999 International Symposition on Nonlinear Theory and Its Applications,Hawaii:NOLTA,1999 : 875-878.
  • 8Kennedy J,Eberhart R.Particle swarm optimization[C].In :Proc IEEE Int Conf on Neural Networks,Perth, 1995 : 1942-1948.
  • 9Eberhart R,Kennedy J.A new optimizer using particle swarm theory[C]. In :Proc 6th Int Sympsium on Micromachine and Human Science, Nagoya, 1995 : 39-43.
  • 10Kennedy J.The particle swarm :Social adaptation of knowledge[C].In : Proc IEEE Int Conf on Evolutionary Computation,Indiamalolis,1997: 303~308.

共引文献18

同被引文献15

  • 1侯勇严,郭文强,孙瑜.一种融合型智能PID控制器的研究与应用[J].微计算机信息,2005,21(06S):10-11. 被引量:10
  • 2黄松林.PID参数模糊自整定非线性系统仿真研究[J].机械工程与自动化,2007(2):93-94. 被引量:8
  • 3ELMAS C,USTUN O.A hybrid controller for the speed control of a permanent synchronous motor drive[J].Control Engineering Practice,2008,16(3):260-270.
  • 4Yuan Q,Dong C Y,Wang Q.An adaptive fusion algorithm based on ANFIS for radar/infrared system[J].Expert System with Applications:An International Journal,2009,36(1):111-120.
  • 5Esen Hikmet,Inalli Mustafa,Sengur Abdulkadir.Predicting performance of a ground-source heat pump system using fuzzy weighted preprocessing-base ANFIS[J].Building and Environment,2008,43(12):2178-2187.
  • 6喻凡 Crolla D.车辆动力学及其控制[M].北京:人民交通出版社,2003.
  • 7刘艳军,王伟.一类多变量非线性系统的自适应模糊控制[J].自动化学报,2007,33(11):1163-1169. 被引量:13
  • 8Stanway R, Sproston J L, Stevens N G. Non-linear modelling of an electro-rheological vibration damper[ J]. Journal of E- lectrostatics, 1987,20 ( 2 ) : 167 - 184.
  • 9Spencer B F, Dyke S J, Sain M K, et al. Phenomenological model for magneto rheological dampers [ J ]. Journal of Engi- neering Mechanics-ASCE, 1997,123 (3) :230 - 238.
  • 10Pedro J, Dahunsi O. Neural network based feedback linear- ization control of a servo-hydraulic vehicle suspension system [ J ]. International Journal of Applied Mathematics and Com- puter Science, 2011, 21 ( 1 ) : 137 - 147.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部