期刊文献+

六价铬还原细菌Bacillus cereus S5.4还原机理及酶学性质研究 被引量:24

Mechanisms and Enzymatic Characters of Hexavalent Chromium Reduction by Bacillus cereus S5.4
在线阅读 下载PDF
导出
摘要 从宝钢电镀污泥中分离得到1株六价铬还原细菌Bacillus cereus S5.4,在液体LB培养基中培养72 h完全还原2 mmol/LCr^6+.测定该菌株六价铬还原后细胞内外六价铬和总铬浓度,检测细胞各组分六价铬还原能力,并结合扫描电镜分析六价铬还原前后细胞形态的变化.结果表明,细菌的细胞壁膜能阻止六价铬进入细胞,是六价铬发生还原的主要场所,其通透性的改变将影响六价铬还原酶的作用;该菌株六价铬还原酶为非分泌型,在细菌细胞内侧发生作用.测定六价铬还原酶活性和稳定性:其最适温度范围25-37℃,最适pH 7,Cu^2+有增强六价铬还原酶活性的作用;在37℃,该菌株六价铬还原酶Km为125.61μmol/L,Vmax为7.68 nmol/(min·mg). A strain of bacteria identified as Bacillus cereus $5.4, which was isolated from the electroplating sludge of Baosteel Corporation, Shanghai, was able to completely reduce 2 mmol/L Cr^6+ in LB liquid after 72 hours. Experiments on concentrations of hexavalent and total chromium inside and outside bacterial cells after hexavalent chromium reduction, and hexavalent chromium reduction abilities of different cellular components, and SEM analysis of cellular morphology before and after hexavalent chromium reduction, showed that cellular walls and membranes, which were able to prevent hexavalent chromium out from living cells, were the main sites where hexavalent chromium reduction took place, and changes of their permeability would take effect on the function of hexavalent chromium reductase. The reductase was non- secretive and took effect on the inner side of living cells. Determination of the activity and stability of hexavalent chromium reductase showed that the optimal temperature range and pH of the reductase was 25 - 37℃ and pH 7, respectively. Cu^2+ had some effect on the promotion of reductase activity. At the temperature of 37℃, Km and Vmax of the reductase was 125.61 μmol/L and 7.68 nmol/(min· mg), respectively.
出处 《环境科学》 EI CAS CSCD 北大核心 2008年第3期751-755,共5页 Environmental Science
基金 国家自然科学基金项目(50130030)
关键词 Bacilluscereus 六价铬 还原酶 酶动力学曲线 Bacillus cereus hexavalent chromium reductase enzymatic kinetic curve
  • 相关文献

参考文献25

  • 1江澜.微生物治理铬污染的应用与发展[J].重庆工商大学学报(自然科学版),2006,23(2):132-135. 被引量:15
  • 2Garbisu C, Alkorta l, Llama M J, et al. Aerobic chromate reduction by Bacillus subtilis [ J ]. Biodegradation, 1998, 9 ( 2 ) : 133-141.
  • 3柴立元,龙腾发,唐宁,庄明龙,闵小波.微生物治理碱性含铬废水的试验研究[J].中南大学学报(自然科学版),2005,36(5):816-820. 被引量:24
  • 4Horton R N, Apel W A, Thompson V S, et al. Low temperature reduction of hexavalent chromium by a microbial enrichment consortium and a novel strain of Arthrobacter aurescens [ J ]. BMC Microbiology, 2006, 6(5): 5-12.
  • 5Megharaj M, Avudainayagarn S, Naidu R. Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste [J]. Current Microbiology, 2003, 47(1) : 51-54.
  • 6Xu W H, Liu Y G, Zeng G M, et al. Enhancing effect of iron on chromate reduction by Cellulomonas flavigena [J]. Journal of Hazardous Materials, 2005, 126(1 ) : 17-22.
  • 7Teo B M, Obraztsova A Y. Sulfate-reducing bacterium grows with Cr ( Ⅵ ), U( Ⅵ ), Mn( Ⅳ ) and Fe( Ⅲ ) as electron acceptors [J]. FEMS Microbiology Letters, 1998, 162(1): 193-198.
  • 8Komofi K, Rivas A, Toda K, et al. Biological removal of toxic chromium using an Enterobater cloacae strain that reduces chromates under anaerobic conditions [ J ] . Biotechnology & Bioengineering ,1990, 35(9): 951-954.
  • 9Pattanapipitpaisal P, Mabbett A N, Finlay J A, et al. Reduction of Cr( Ⅵ ) and bioaccumulation of chromium by gram positive and gram negative microorganisms not previously exposed to Cr-stress [ J ]. Environmental Technology, 2002, 23(7): 731-745.
  • 10Pattanapipitpaisal P, Brown N L, Maeaskie L E. Chromium reduction and 16S rRNA identification of bacteria isolated from a Cr( Ⅵ )-contaminated site [ J ]. Applied Microbiology & Biotechnology, 2001, 57(2): 257-261.

二级参考文献85

共引文献180

同被引文献287

引证文献24

二级引证文献140

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部