期刊文献+

基于高光谱特征选择和RBFNN的城市植被胁迫程度监测 被引量:10

Urban Vegetation Stress Level Monitoring Based on Hyperspectral Feature Selection and RBF Neural Network
在线阅读 下载PDF
导出
摘要 以Hyperion星载高光谱数据为例,基于指数提取-特征选择-分类识别-模式分析的思路,分析广州市的城市植被胁迫状况。提取与胁迫相关的高光谱植被指数,对其进行相关分析,滤除相关性很高的植被指数,利用选取的特征应用RBF(径向基函数)神经网络对城市的植被胁迫程度进行分类,对广州市受胁迫植被的空间分布及其原因进行分析。研究表明:运用特征选取和RBF神经网络可以较好的区分城市植被受胁迫的程度;城市植被受胁迫的程度与城市交通污染、人为干扰相关性比较大;受胁迫植被的强度分布呈现从城市中心向外的梯度变化,在大块绿地外围呈环状分布。 Urban vegetation system has great ecological value to social-economic-natural ecosystem, but it was often submitted to different stresses caused by air pollution, water pollution, "heat island" problem, etc. , which debases its ecological service functions, so it is important to develop methods to monitor urban vegetation stress level. Using the-Hyperion hyper-spectral data, which has advantage in monitoring vegetation physiological characters on large scale, an urban vegetation stress level monitoring method was developed based on vegetation stress feature selection and RBFNN (Radial Basis Function Neural Network) . Firstly, 14 hyperspectral vegetation indices were extracted from reflectance image of Hyperion and a feature selection based on correlation analysis was conducted to reduce the redundancies. Then an urban vegetation stress level classifier based on RBFNN was trained on the selected features and vegetation stress level was classified and mapped. Finally, the spatial distribution characteristics of vegetation stress in urban and some reasons were analyzed. The result shows that the RBFNN vegetation stress level classifier is able to identify vegetation stress level quickly and accurately. Vegetation stress level is correlated largely with urban traffic pollution and human disturbance, and vegetation in commercial and residential areas of urban center are apparently experiencing higher stress than vegetation in suburban regions; the stress level shows a ringy distribution around large greenbelts.
出处 《地理科学》 CSCD 北大核心 2008年第1期77-82,共6页 Scientia Geographica Sinica
基金 国家自然科学基金(40601010) 国家杰出青年科学基金(40525002) “985工程”GIS与遥感的地学应用科技创新平台重大项目(105203200400006) 中国博士后基金(20060390208) 广东省环境科学与技术公共实验室开放基金(060207)项目资助
关键词 植被胁迫 城市 HYPERION RBF神经网络 特征选择 vegetation stress urban Hyperion neural network feature selection
  • 相关文献

参考文献31

  • 1刘彦平.浅议绿色物流[J].生态经济,2002,18(8):50-52. 被引量:28
  • 2刘全校,崔永岩,陈蕴智,龙柱,杨淑蕙.木素-酚醛树脂在刨花板和胶合板中的应用[J].西南造纸,2000,29(5):5-6. 被引量:34
  • 3Li L, Ustin S L, Lay M. Application of AVIRIS data in detection of oil - induced vegetation stress and cover change at Jornada, New Mexico [ J]. Remote Sensing of Environment, 2005,94 (1): 1-16.
  • 4Vidal A, Devaux Ros C. Evaluating forest fire hazard with a landsat TM derived water stress index [ J ]. Agricultural and Forest Meteorology, 1995,(77): 207- 224.
  • 5Moran M S, Clarke T R, Inoue Y, et al. Estimating crop water deficit using the relation between surface air temperature and spectral vegetation index [ J]. Remote Sensing of Environment, 1994, (49) : 246 -263.
  • 6Zhao D H, Li J L, Qi J G. Identification of red and NIR spectral regions and vegetative indices for discrimination of cotton nitrogen stress and growth stage[ J]. Computers and Electronics in Agriculture, 2005, (48) : 155 - 169.
  • 7张仁华.以红外辐射信息为基础的估算作物缺水状况的新模式[J].中国科学:B辑,1986,7:776-784.
  • 8Chen D Y, Huang J F, Jackson T J. Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near - and short - wave infrared bands [ J ]. Remote Sensing of Environment, 2005, (98) : 225 - 236.
  • 9Andras J, Peter K, Laszlo T. Detection of urban effect on vegetation in a less built -up Hungarian city by hyperspectral remote sensing[J]. Physics and Chemistry of the Earth, 2005, (30) : 255 - 259.
  • 10刘殿伟,宋开山,张柏.行道树叶绿素变化的高光谱神经网络模型[J].生态学杂志,2006,25(3):238-242. 被引量:15

二级参考文献178

共引文献372

同被引文献150

引证文献10

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部