期刊文献+

基于超平面的T-S模糊模型辨识 被引量:2

T-S fuzzy model identification based on hyperplane
在线阅读 下载PDF
导出
摘要 针对多输入多输出(MIMO)的非线性热工动态对象,基于超平面的建模思想,提出了一种新的T-S模糊模型建模方法,既能够统一前、后件的参数辨识,又能防止过多增加计算量。介绍了通用的T-S模糊模型,详细推导出点到超平面的距离公式,据此,提出基于平均线性度的有效性能指标函数S(c),从而避免了规则数确定的盲目性。针对T-S模糊模型分段线性的特点,得出了输入、输出联合空间中的点到各后件子模型所对应的超平面距离,归纳出具体的建模步骤,同时给出了平均线性度D(c)的计算公式。新的建模算法可解释性好,不仅具有良好的精度,而且具有较好的泛化能力。最后,针对典型负荷被控对象的仿真结果证实了该方法的有效性。 Aiming at the nonlinear thermal dynamic object with MIMO (Multi - Input Multi - Output), T-S fuzzy modeling method based on hyperplane is proposed,which unifies the antecedent and consequent parameters of T-S fuzzy model and prevents overabundance of calculation. The general T-S fuzzy model is introduced and the formula calculating the distance from a point to a hyperplane is deduced. The effectiveness index function S(c) based on the average linearity is proposed to determine the number of rules. The distances from an point to the hyperplanes corresponding to different consequent sub- models in the joint I/0 space are obtained by the subsection- linearization of T-S fuzzy model and the modeling steps are concluded,as well as the formula of average linearity calculation. The new algorithm shows good interpretability,accuracy and generalization capability. The simulation of an object with typical load demonstrates its effectiveness.
出处 《电力自动化设备》 EI CSCD 北大核心 2008年第3期14-17,共4页 Electric Power Automation Equipment
关键词 超平面 平均线性度 T—S模糊模型 泛化性能 hyperplane average linearity T-S fuzzy model generalization performance
  • 相关文献

参考文献16

  • 1HADJILI M L,WERTZ V. Takagi-Sugeno fuzzy modeling incorporating input variables selection [J]. IEEE Trans on Fuzzy Systems, 2002,10(6) :728-742.
  • 2BABUSKA R. Fuzzy modeling and identification[D]. Delft,The Netherlands:Delft University, 1996.
  • 3SUGENO M,YASUKAWA T. A fuzzy-logic-based approach to qualitative modeling[J]. IEEE Trans on Fuzzy Systems,1993, 1(1):7-31.
  • 4TAKAGI T,SUGENO M. Fuzzy identification of systems and its application to modeling and control[J]. IEEE Trans Syst Man Cybern, 1985(15) : 116-132.
  • 5FANTUZZI,ROVATTI C. On the approximation capabilities of the homogeneous Takagi-Sugeno fuzzy model[J]. IEEE Fuzzy, 1996,2(2) : 1067- 1072.
  • 6HUA O,LI Wangjing,NIEMANN D,et al. T-S fuzzy model with linear rule consequence and PDC controller:a universal frame work for nonlinear control systems[J]. IEEE Fuzzy,2000,6(2): 549 - 554.
  • 7刘蓉,吕震中.基于T-S模糊模型的球磨机负荷控制系统[J].电力自动化设备,2007,27(3):17-20. 被引量:10
  • 8WANG S D,LEE C H. Fuzzy system modeling using linear distance rules[ J ]. Fuzzy Sets an d Systems, 1999,108 ( 2 ) : 179 - 191.
  • 9BACK A D,TRAPPENBERG T P. Selecting inputs for modeling using normalized higher order statistics and independent component analysis [J ]. IEEE Trans Neural Networks,2001,12 ( 3 ) : 612-617.
  • 10TRAPPENBERG T P,OUYANG Jie,BACK A. Input variable selection:mutual information and linear mixing measures [J]. IEEE Trans on Knowledge and Data Engineering, 2006,18 ( 1 ) : 37 - 46.

二级参考文献47

共引文献34

同被引文献28

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部