期刊文献+

决策树技术分析气象因子对电力负荷预测的影响 被引量:7

Influence of Meteorological Factors on Load Forecasting Based on the Decision Tree
在线阅读 下载PDF
导出
摘要 基于决策树技术,对气象因子和日电力负荷的最高、最低值、平均值进行联合建模,量化气象因子对电力负荷的影响,从而确立一种有效的基于气象因子的短期电力负荷预测方法,用以生成日特征负荷决策树预测模型。通过该模型,结合预测日的气象、属性(日期、节日等)等信息,可进行日特征负荷的预测。预测结果表明,该模型具有自动化程度高、预测结果准确率高的特性。以河北省保定市气象数据和电力负荷数据为例进行了训练和预测,研究结果证明这种方法能较大地提高日电力负荷预测的精度。 Based on the decision tree and combined with the meteorological factors and the highest, lowest and average of electrical load, a model was established to measure the influence of me- teorological factors on the load. An effective short-term forecasting method was put forward to establish the forecasting model of daily-characteristic-load decision tree. Daily characteristic load is forecasted according to the model and the date-forecasted information such as weather, attributes (date, workday or weekend). The forecasted results show that the proposed method has high-automation and high-accuracy. The method applies the data of meteorological factors and load of Baoding in Hebei Province to train and forecast, the results show that the new method can largely improve the precision of load forecasts.
出处 《气象》 CSCD 北大核心 2008年第3期106-111,共6页 Meteorological Monthly
关键词 决策树 气象因子 负荷预测 ID3算法 decision tree meteorological factor load forecasting ID3 algorithm
  • 相关文献

参考文献11

  • 1牛东晓 曹树华 赵磊 等.电力负荷预测技术及其应用[M].北京:中国水利电力出版社,1999..
  • 2胡江林,陈正洪,洪斌,王广生.华中电网日负荷与气象因子的关系[J].气象,2002,28(3):14-18. 被引量:68
  • 3Yang Hongtzer HuangChao-Ming. A New Short-Term Load Forecasting Approach Using Self-Organizing Fuzzy ARMAX Models[J].IEEE PWRS, 1998, 13(1):464- 473.
  • 4RahmanS,BhatnagarR. An Expert System Base Algorithm for Short-Term Load Forecasting [ J ]. IEEE PWRS, 1998, 3(2).
  • 5Hok-L,HsuYY,LeeCE, et al. Short-Term Load Forecasting of TaiWan Power System Using a Knowledge-Based Expert System[J]. IEEE PWRS, 1990, 5(4).
  • 6T M Peng, N F Hubele, G G Karady. Advancement in the Application of Neural Networks for Short-Term Load Forecasting[ J ]. IEEE PWRS, 1992,7 ( 1 ) : 427- 435.
  • 7HoK-L. Short-Term Load Forecasting Using Multi-Layer Neural Network with an Adaptive Larning Algorithm[J]. IEEE PWRS, 1992, 7(1).
  • 8Quinlan J R. Induction of decision trees[J ]. Machine Learning, 1986, (1): 81-106.
  • 9朱六璋,袁林,黄太贵.短期负荷预测的实用数据挖掘模型[J].电力系统自动化,2004,28(3):49-52. 被引量:20
  • 10汪峰,于尔铿,阎承山,李晓彬,刘军,刘永奇.基于因素影响的电力系统短期负荷预报方法的研究[J].中国电机工程学报,1999,19(8):54-58. 被引量:50

二级参考文献7

共引文献155

同被引文献100

引证文献7

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部