期刊文献+

用鱼群算法求解石油运输系统多级站定位优化问题 被引量:12

An optimization method of multistage stations locating in oil transportation based on fish-swarm algorithm
原文传递
导出
摘要 建立了石油运输系统多级站定位优化大规模非线性MIP模型.由于该模型用传统方法求解相当困难,应用改进的鱼群算法对该模型进行了求解.在解算过程中,对模型中的连续实型变量进行离散化处理,从而使整个优化模型变成纯0-1非线性IP模型,使求解过程在基于二进制环境高速运算成为可能;用人工鱼体能累计和消耗程度来调度其行为;用海明距离度量个体间的距离;采用随机步距移动的贪婪法描述个体追尾行为;采用鱼群规模、视野大小、拥挤程度和最低生存体能控制等方法实现局部最优解逃逸策略;采用最大迭代次数和迭代过程中最优解平均值变化程度来控制迭代终止时机.应用结果表明,该算法计算速度和稳定性有较大提高,可在微机上稳定地获取问题的最优解. A large-scale nonlinear MIP model of optimum locating of multistage stations in oil field is established. Because the model is very difficult to solve by the traditional methods, a synthetic solution is presented by an improved fish-swarm algorithm. In the solution, the real continuous variables are changed into discrete 0-1 variables so that the nonlinear MIP model is transferred into a pure 0-1 nonlinear IP model and it is possible to solve the model with high speed because the whole solving process falls into a binary calculation environment ; behaviors of a fish are dispatched by its body energy status; the Hamming distance is used to measure the distance between two fisbes; the following behavior is described by the greedy method with random moving - steps; the number of fishes, the size of visual scope, the crowded degree and the lowest survival body energy controlling technique are used to realize escaping policy from locally optimum positions; the maximum iterating times and the changing rate of the optimum solutions during iterating are used to control the terminating time. The application shows that the speed and stability of calculation is increased greatly and the optimum solution of the optimum model can be gained on microcomputers.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2008年第3期94-102,共9页 Systems Engineering-Theory & Practice
关键词 石油运输 大规模非线性混合整数规划 鱼群算法 群聚智能 动物行为 oil transportation large-scale nonlinear mixed integer programming fish-swarm algorithm swarm intelligence animal behavior
  • 相关文献

参考文献7

  • 1李晓磊,路飞,田国会,钱积新.组合优化问题的人工鱼群算法应用[J].山东大学学报(工学版),2004,34(5):64-67. 被引量:163
  • 2李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践,2002,22(11):32-38. 被引量:885
  • 3Wlons. The animal path to AI[C].Proeeeding of the First International Conference on the Simulation of Adaptive Behavior. Cambridge: MIT Press, 1991.
  • 4Bonanbeau E, Theraulaz G. Swarm smarts[J]. Scientific American, 2000,282(3):72- 79.
  • 5Reynolds C W. Flocks, herds, schools: A distributed behavioral models[C].Proceedings of SIGGRAPH' 87, Anaheim, California. Computer Graphics, 1987,21(4) :25 - 34.
  • 6Jeffrey Dean. Animates and what they can tell us[J]. Trends in Cognitive Sciences, 1998,2:60- 67.
  • 7Ravinda K, Ahuj A, Ozlem E, et al. A survey of very large-scale neighborhood search techniques[J]. Discrete Applied Mathematics, 2002, 123( 1 - 3) :75 - 102.

二级参考文献7

  • 1戴汝为 周登勇.智能控制与适应性.第三届全球智能控制与自动化大会(WCICA'2000)[M].合肥:-,2000.11-17.
  • 2WILSON S. The animat path to AI[A]. Proceedings of the First International Conference on the Simulation of Adaptive Behavior[C]. Cambridge: MIT Press, 1991.
  • 3JEFFREY D. Animats and what they car tell us[J]. Trends in Cognitive Sciences, 1998,2(2): 60-67.
  • 4BONABEAU E, THERAULAZ G. Swarm smarts[J]. Scientific American, 2000,282(3) :72-79.
  • 5RAVINDA K, AHUJ A, OZLEM E, et al. A survey of very large-scale neighborhood search techniques[J]. Discrete Applied Mathematics, 2002,123(1~3): 75-102.
  • 6李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践,2002,22(11):32-38. 被引量:885
  • 7李晓磊,钱积新.基于分解协调的人工鱼群优化算法研究[J].电路与系统学报,2003,8(1):1-6. 被引量:137

共引文献948

同被引文献90

引证文献12

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部