摘要
研究一类时滞偏生态模型解的振动性,利用平均法,通过使用偏泛函微分方程上、下解思想和泛函微分方程振动性理论,获得了其解的正性和关于正平衡态振动的充分条件,推广了文献的结果,并举例说明了所得结果的意义.
By using the upper- and lower- solution method of partial functional differential equations and the oscillation theory of functional differential equation, the oscillation of solutions of a population equation with diffusion and delay is studied and a sufficient condition for all positive solutions of the equation to oscillate about the positive equilibrium is obtained. Some known results are extended. Finally, two models arising from ecology are given to illustrate the obtained results.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第2期168-171,共4页
Journal of Sichuan Normal University(Natural Science)
基金
重庆市教委优秀青年基金(D2005-37)资助项目
关键词
时滞
扩散
上、下解
偏生态模型
振动性
Delay
Diffusion
Upper- and lower- solution
Population equation
Oscillation