期刊文献+

多类支持向量机的DDoS攻击检测的方法 被引量:6

Detecting DDoS Attack Based on Multi-Class SVM
在线阅读 下载PDF
导出
摘要 为了利用SVM准确的检测DDoS,需要找到区分正常流和攻击流的特征向量,根据DDoS攻击的特点,提出了独立于流量的相对值特征向量。为了在指示攻击存在的同时,也指示攻击强度,多类支持向量机(MCSVM)被引入到DDoS检测中。实验表明,RLT特征与MCSVM相结合,可以有效检测到不同类型的DDoS攻击,并且能准确地指示攻击强度,优于目前已有的检测方法。使用RLT特征进行DDoS检测,比使用单一攻击特征进行识别的方法,包含更多的攻击信息,可以得到较高的检测精度。 In order to detect distributed denial of service (DDoS) attacks with support vector machine (SVM) measures, the feature vectors that can distinguish normal stream from attack stream are required. According to the characters of DDoS attacks, a group of relative value features are proposed. For indicating the existence and attack intensity of DDoS attack simultaneously, multi-class SVM (MCSVM) is introduced to detecting DDoS Attacks. As shown in our numeric experiments, the combination of RLT features and MCSVM can detect several kinds of DDoS attacks effectively and indicate attack intensity precisely. The detection results are better than other detection measures. Because the RLT features include more attack information than the detection measures using single attack character, a better detection result is available.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2008年第2期274-277,共4页 Journal of University of Electronic Science and Technology of China
基金 四川省青年科技基金(07JQ0060)
关键词 分布式拒绝服务攻击 多类支持向量机 相对值特征向量 支持向量机 distributed denial of service attack multi-class SVM relative value feature vector support vector machine
  • 相关文献

参考文献9

  • 1CHENG C M, KUNG H, TAN K S. Use of spectral analysis in defense against Dos attack[C]//In: Proceedings of IEEE GLOBECOM. Taipei, china: IEEE, 2002.
  • 2FEINSTEIN L, SCHNACHENBERG D, BALUPARI R, et al. Statistical approaches to DDoS attack detection and response[C]//In: Proceedings of the DARPA Information Survivability Conference and Exposition. Washington D C: IEEE, 2003.
  • 3何慧,张宏莉,张伟哲,方滨兴,胡铭曾,陈雷.一种基于相似度的DDoS攻击检测方法[J].通信学报,2004,25(7):176-184. 被引量:36
  • 4SHEVTEKAR A, ANANTHARAM K, ANSARI N. Low rate TCP denial-of-service attack detection at edge routers[J]. IEEE Communication Letters, 2005, 9(4): 363-365.
  • 5邓乃杨 田英杰.数据挖掘中的新方法-支持向量机[M].北京:科学出版社,2004..
  • 6孙钦东,张德运,高鹏.基于时间序列分析的分布式拒绝服务攻击检测[J].计算机学报,2005,28(5):767-773. 被引量:55
  • 7SEO J, LEE C, SHON T. A new DDoS detection model using multiple SVM and TRA[C]//In: Proceedings of The First International Workshop on Security in Ubiquitous Computing Systems(SecUbiq'05). Nagasaki: LNCS, 2005.
  • 8XU Tu, HE Da-ke, ZHENG Yu. Detecting DDoS attack based on one-way connection density[C]//In: Proceedings of The Tenth IEEE International Conference on Communications Systems. Singapore, IEEE CDROM, 2006.
  • 9MIT Lincoln Laboratory. 2000 DARPA intrusion detection scenario specific data sets. [DB/OL]. [2006-01-18]. http://www.ll.mit.edu/IST/ideval/ data/2000/2000_data_index.html.

二级参考文献23

  • 1孙钦东,张德运,孙朝晖,张晓.基于流连接密度的分布式拒绝服务攻击检测[J].西安交通大学学报,2004,38(10):1048-1052. 被引量:5
  • 2WILLINGER W. A bibliographical guide to self-similar traffic and performance modeling for modern high-speed networks[A]. Stochastic Networks :Theory and Applications[C]. 1996. 339-366.
  • 3CERT Advisory CA-20000-01. Denial-of-service developments[EB/OL]. http:// www.cert.org/ advisory/ CA-2000-01.html.2000.
  • 4FOX K, HENNING R, REED J, SIMONIAN R. A Neural Network Approach Towards Intrusion Detection[R]. Harris Corporation, 1990.
  • 5YE N. A markov chain model of temporal behavior for anomaly detection[A]. Workshop on Information Assurance and Security[C]. West Point,NY, 2000.
  • 6KAIZAKIR. Aguri: an aggregation-based traffic profiler[EB/OL]. http://www.csl.sony.co.jp/person/kjc/kjc/software.html.
  • 7Haykin S. Adaptive Filter Theory. Third Edition. Upper Saddle River, New Jersey: Prentice-Hall, 1996
  • 8Vapnik V.N. The Nature of Statistical Learning Theory. NY: Springer-Verlag, 1995
  • 9Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121~167
  • 10Boser B.E., Guyon I.M., Vapnik V.N. A training algorithm for optimal margin classifiers. In: Proceedings of the 5th Annual ACM Workshop on COLT, Pittsburgh, 1992, 144~152

共引文献118

同被引文献39

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部