期刊文献+

Scaling up Kernel Grower Clustering Method for Large Data Sets via Core-sets 被引量:2

Scaling up Kernel Grower Clustering Method for Large Data Sets via Core-sets
在线阅读 下载PDF
导出
摘要 核栽培者是聚类最近 Camastra 和 Verri 建议的方法的一个新奇的核。它证明为各种各样的数据的好性能关于流行聚类的算法有利地设定并且比较。然而,方法的主要缺点是在处理大数据集合的弱可伸缩能力,它极大地限制它的应用程序。在这份报纸,我们用核心集合建议一个可伸缩起来的核栽培者方法,它是比为聚类的大数据的原来的方法显著地快的。同时,它能处理很大的数据集合。象合成数据集合一样的基准数据集合的数字实验显示出建议方法的效率。方法也被用于真实图象分割说明它的性能。 Kernel grower is a novel kernel clustering method proposed recently by Camastra and Verri.It shows good performance for various data sets and compares favorably with respect to popular clustering algorithms.However,the main drawback of the method is the weak scaling ability in dealing with large data sets,which restricts its application greatly.In this paper,we propose a scaled-up kernel grower method using core-sets,which is significantly faster than the original method for large data clustering. Meanwhile,it can deal with very large data sets.Numerical experiments on benchmark data sets as well as synthetic data sets show the efficiency of the proposed method.The method is also applied to real image segmentation to illustrate its performance.
出处 《自动化学报》 EI CSCD 北大核心 2008年第3期376-382,共7页 Acta Automatica Sinica
基金 Supported by National Natural Science Foundation of China(60675039) National High Technology Research and Development Program of China(863 Program)(2006AA04Z217) Hundred Talents Program of Chinese Academy of Sciences
关键词 大型数据集 图象分割 模式识别 磁心配置 核聚类 Kernel clustering core-set large data sets image segmentation pattern recognition
  • 相关文献

参考文献19

  • 1Xu R, Wonsch IID. Survey of clustering algorithms. IEEE Transactions on Neural Networks, 2005, 16(3): 645-678
  • 2Filippone M, Camastra F, Masulli F, Rovetta S. A survey of kernel and spectral methods for clustering. Pattern Recognition, 2008, 41(1): 176-190
  • 3Camastra F, Verri A. A novel kernel method for clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 801-805
  • 4Camastra F. Kernel Methods for Unsupervised Learning [Ph. D. dissertation], University of Genova, 2004
  • 5Ben-Hur A, Horn D, Siegelmann H T, Vapnic V. Support vector clustering. Journal of Machine Learning Research, 2001, 2:125-137
  • 6Scholkopf B, Smola A J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. London: The MIT Press, 2002. 25-55,187-248,405-468
  • 7Badoiu M, Clarkson K L. Optimal core sets for balls. In: Proceedings of DIMACS Workshop on Computational Geometry. New Jersey, USA: 2002
  • 8Kumar P, Mitchell J S B, Yildirim A. Approximate minimum enclosing balls in high dimensions using core-sets. Journal of Experimental Algorithmics, 2003, 8
  • 9Nielsen F, Nock R. Approximating smallest enclosing balls. In: Proceedings of International Conference on Computational Science and Its Applications. Assisi, Italy: Springer, 2004. 147-157
  • 10Tsang I W, Kwok J T, Cheung P M. Core vector machines: fast SVM training on very large data sets. Journal of Machine Learning Research, 2005, 6:363--392

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部