期刊文献+

基于支持向量机的InSAR干涉图相位解缠法 被引量:3

Region-Cutting InSAR Phase Unwrapping Algorithm Based on Support Vector Machine
在线阅读 下载PDF
导出
摘要 提出了一种基于支持向量机的InSAR干涉图区域分割相位解缠法,以支持向量机为分类工具,利用干涉图中的残差点、相位导数方差等相位属性对干涉图中像元分类,把干涉图分割成高质量非掩模区域和低质量掩模区域。先用改进的Itoh方法对非掩模区域解缠,然后应用区域生长策略对掩模区域解缠。最后用真实的和模拟的干涉相位图试验表明算法比现有的传统算法如枝切法等InSAR干涉图相位解缠方法更有效。 A region-cutting phase unwrapping algorithm based on SVM (Support Vector Machines) is proposed, and every pixel can be classified using the phase-related information including residue and phase derivate variance, thus the intetferogram is cut into high-quality non-mask region and low-quality mask region. Region-growing strategy is applied to unwrap mask region after the non-mask region is unwrapped by modified ltoh method, The experiment result on real and simulated SAR interferogram shows the proposed algorithm is more effective than some existing algorithms such as the branch-cut algorithm.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第6期1493-1496,共4页 Journal of System Simulation
基金 国家自然科学基金(60375001) 湖南省自然科学基金资助项目(06JJ4044)
关键词 支持向量机 合成孔径雷达干涉测量 相位解缠 区域分割 SVM InSAR phase unwrapping region-cutting
  • 相关文献

参考文献12

  • 1Goldestin R M, Zebker H A.. Satellite radar interferometry: Two-dimensional Unwrapping[J].Radio Science (S0048-6604), 1988, 23(4):713-720.
  • 2Wei X, Ian Cumming.A region-growing algorilhm for InSAR phase unwrapping[J]. IEEE Transactin on Geoscience and Remote Sensing. (S0196-2892), 1999, 37(1): 124-134.
  • 3Flynn T J.Consistent 2-D phase unwrapping guided by a quality map[C]//Proceedings of the 1996 International Geoscience and Remote Sensing Symposium.NJ:Lincoln,Piscataway,1996:2057-2059.
  • 4Flynn T J.Two-dimensional phase unwrapping with minimum weighted discontinuity[J].J. of Optical Society of America (S0030-3941),1997,14(10): 2692-2701.
  • 5Pritt M D. Least-squares two-dimensional phase unwrapping using FFTs [J].IEEE Transaction on Geoscience and Remote Sensing (S0196-2892), 1994, 32(3): 706-708.
  • 6Ghiglia D C,Romero L A.Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods[J].J.Optical Socitey of America(S0030-3941),1994,11(1):107-117.
  • 7Ghiglia D C, Romero L A. Minimun LP-norm two-dimensional phase unwrapping [J]. J. of Optical Society of America (S0030-3941), 1996, 13(10): 1-15.
  • 8Costantini M A novel phase unwrapping method based on network programming [J]. IEEE Transaction on Geoscience and and Remote Sensing (S0196-2892), 1998, 36(3): 813-821.
  • 9Ghiglia D C,Pritt M D.Two-dimensional phase unwrapping:theory.algorithm,and software[M].USA:John Wiley & Sons.Inc,1998.
  • 10Vapnik V N 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..

二级参考文献35

  • 1Vapnik V N. Statistical learning theory[M]. New York, 1998.
  • 2Scholkoph B, Smola A J, Bartlett P L. New support vectoral gorithms[J]. Neural Computation, 2000, 12:1207-1245.
  • 3Suykens J A K, Branbanter J K, Lukas L, et al. Weighted least squares support vector machines: robustness and spare approximation [J]. Neurocomputing, 2002, 48(1): 85-105.
  • 4Lin C-F, Wang S-D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(2): 464-471.
  • 5Tay F E H, Cao L J. Modified support vector machines in financial time series forecasting[J]. Neurocomputing, 2002, 48: 847-861.
  • 6Tay F E H, Cao L J. ε-Descending support vector machines for financial time series forecasting[J]. Neural Processing Letters, 2002, 15(2): 179-195.
  • 7Keoman V, Hadzic I. Support vectors selection by linear programming[A]. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks[J. Como, Italy, 2000, 5: 193-198.
  • 8Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machine[A]. Proc the 1997 IEEE workshop on neural networks for signal processing[C]. Amelea Island, FL, 1997, 276-285.
  • 9Laskov P. Feasible direction decomposition algorithms for training support vector machines[J]. Machine Learning, 2002, 46(1): 315-349.
  • 10Collobert R. SVMTorch: support vector machines for large-scale regression problems[J]. Journal of Machine Learning Research, 2001, 1: 143-160.

共引文献323

同被引文献23

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部