期刊文献+

城市交通技术援助项目特点及效果 被引量:1

Characteristics of technical assistance for urban transportation and effect
在线阅读 下载PDF
导出
摘要 为探讨城市交通项目技术援助实施效果评价方法,从技术援助的定义入手,分析了城市交通技术援助项目的特征,并针对技术援助形式之一培训考察,提出了基于柯克帕特里克模型的评价方法。该方法通过"基于考察培训报告的类问卷法"实现了指标量化,达到了评价的目的。以广州市中心区交通项目技术援助考察培训为例,验证了该方法。结果表明:基于柯克帕特里克模型评价技术援助考察培训项目实施效果的可行性较好。 In order to discuss the effect appraisal method for the technical assistance projects in ur- ban transportation, the paper, beginning from the definition, analyzes the characteristics of technical assistance, inspects one of the assistance projects training, and offers the method of Kirkpatrick model. This method divides the inspection and training into four levels:reflecting, studying, acting and resulting. Through "questionnaire survey based on the inspection report", every index and the appraisal target are achieved. The examples of technical assistance Guangzhou center transportation are adopted to test the method. The result indicates that the method of Kirkpatrick model is feasible for effect appraisal of technical assistance.
出处 《长安大学学报(社会科学版)》 2008年第1期38-42,共5页 Journal of Chang'an University(Social Science Edition)
基金 教育部新世纪优秀人才支持项目(NCET-04-0946) 交通部西部交通建设科技项目(2006318812112)
关键词 交通运输经济 城市交通 技术援助 柯克帕特里克模型 transportation economy urban transportation technical assistance Kirkpatrick model
  • 相关文献

参考文献10

二级参考文献20

共引文献65

同被引文献22

  • 1赵建有,俞礼军.城市交通可持续发展状态量化评价方法[J].长安大学学报(自然科学版),2004,24(4):63-66. 被引量:17
  • 2石琼,吴群琪.拥挤收费为主导缓解城市交通拥挤可行性研究[J].长安大学学报(社会科学版),2004,6(3):38-42. 被引量:32
  • 3赵巧霞,马志强,张发.以最小换乘次数和站数为目标的公交出行算法[J].计算机应用,2004,24(12):136-137. 被引量:36
  • 4苏爱华,施法中.公交网络换乘问题的一种实现[J].工程图学学报,2005,26(4):55-59. 被引量:19
  • 5NUZZOLO A, CRISALLI U, ROSATI L. A schedule based assignment model with explicit capacity constraints for congested transit networks[-J~. Transportation Research Part C: Emerging Technologies, 2012, 20(1): 16-33.
  • 6CIPRIANI E, GORI S, PETRELLI M. Transit network design: a procedure and an application to a large urban area[J]. Transportation Research Part C: Emerging Technologies, 2012, 20(1): 3- 14.
  • 7WAHBA M. MILATRAS: microsimulation learning-based approach to transit assignment[D]. Toronto, University of Toronto, 2008.
  • 8YU Bin, YANG Zhong-zhen, JIN Peng huan, et al. Transit route network design maximizing direct and transfer demand density[J]. Transportation Research Part C: Emerging Technologies, 2012, 22(10) : 58 -75.
  • 9KNOPPERS P, MULLER T. Optimized transfer opportunities in public transport[J]. Transportation Science, 1995, 29(1) : 101 -105.
  • 10SHAFAHI Y, KHANI A. A practical model for transfer optimization in a transit network: model formulations and solutions[J]. Transportation Research Part A: Policy and Practice, 2010, 44(6): 377- 389.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部