期刊文献+

生物膜力学与几何中的对称 被引量:8

SYMMETRIES IN THE MECHANICS AND GEOMETRY FOR BIOMEMBRANES
在线阅读 下载PDF
导出
摘要 简要综述了生物膜力学与几何的新进展.在生物膜力学中,着重介绍了基于微分算子的平衡理论和几何约束理论;在生物膜几何中,重点评述了源于生物膜力学的新梯度算子及其积分性质.指出:新梯度算子可能在生物膜曲面上诱发新的驱动力;生物膜力学与几何是一个有机整体,其背后存在着一个对称的几何体系,包括对称的微分算子以及对称的积分定理系统. This paper briefly reviews the recent progress in the mechanics and geometry for biomembranes. In biomembrane mechanics, the equilibrium theory and geometrically constraint theory are introduced. In biomembrane geometry, a new gradient operator derived from biomembrane mechanics and its integral characteristics are summarized. The new gradient operator may be responsible for a new driving force on biomembrane surfaces. Besides, the mechanics and geometry for biomembranes are found to be an organic entity, behind which is a symmetric geometric system, including symmetric differential operators and symmetric integral theorems.
作者 殷雅俊
出处 《力学与实践》 CSCD 北大核心 2008年第2期1-10,共10页 Mechanics in Engineering
基金 国家自然科学基金项目资助(10572076)
关键词 生物膜 第2类梯度算子 积分定理 对称 biomembrane, second gradient operator, integral theorems, symmetry
  • 相关文献

二级参考文献8

  • 1殷雅俊.Integral Theorems Based on a New Gradient Operator Derived from Biomembranes (Part I): Fundamentals[J].Tsinghua Science and Technology,2005,10(3):372-375. 被引量:6
  • 2Boal D 2002 Mechanics of the Cell (Cambridge: Cambridge University Press).
  • 3Ou-Yang Z C 1999 Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases (Singapore:World Scientific).
  • 4Ou-Yang Z C and Helfrich W 1989 Phys. Rev. A 39 5280.
  • 5Leibler S 1986 J. Physique 47 507.
  • 6Mukhopadhyay R, Lim H and Wortis M 2002 Biophys. J.82 1756.
  • 7Lim H, Wortis M and Mukhopadhyay R 2002 Proc. Natl.Acad. Sci. U.S.A. 99 16766.
  • 8Westenholz C 1981 Differential Forms in Mathematical Physics (revised edition) (Amsterdam: Elsevier).

共引文献7

同被引文献24

  • 1WU ChuiJie1 & WANG Liang2 1 State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China,2 Research Center for Fluid Dynamics, People’s Liberation Army University of Science and Technology, Nanjing 211101, China.Numerical simulations of self-propelled swimming of 3D bionic fish school[J].Science China(Technological Sciences),2009,52(3):658-669. 被引量:25
  • 2殷雅俊.Integral Theorems Based on a New Gradient Operator Derived from Biomembranes (Part I): Fundamentals[J].Tsinghua Science and Technology,2005,10(3):372-375. 被引量:6
  • 3殷雅俊.Integral Theorems Based on a New Gradient Operator Derived from Biomembranes (Part II): Applications[J].Tsinghua Science and Technology,2005,10(3):376-380. 被引量:3
  • 4Yin Y, Chen Y, Ni D, et al. Shape equations and curvature bifurcations induced by inhomogeneous rigidities in cell membranes. Journal of Biomechanics, 2005, 38: 1433- 1440.
  • 5Yin Y, Yin J, Lv C. Equilibrium theory in 2D Riemann manifold for heterogeneous biomembranes with arbitrary variational modes. Journal of Geometry and Physics, 2008, 58:122-132.
  • 6Yin Y, Yin J, Ni D. General mathematical frame for open or closed biomembranes: equilibrium theory and geometrically constraint equation. Journal of Mathematical Biology, 2005, 51:403-413.
  • 7Yin Yajun, Wu Jiye. Shaper gradient: a driving force induced by space curvatures. International Journal of Nonlinear Sciences and Numerical Simulations, 2010, 11(4): 259-267.
  • 8Donnell LH. A new theory for the buckling of thin cylinders under axial compression and bending. Trans ASME, 1934, 56:795-806.
  • 9Conyers Herring. Surface tension as a motivation for sintering. In: Kingston WE, Editor. The Physics of Powder Metallurgy, Chapter 8, New York: McGraw-Hill, 1951.
  • 10Mullins WW. Theory of thermal grooving. Journal of Applied Physics, 1957, 28:333-339.

引证文献8

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部